Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer's disease (Review)
- Authors:
- Jue Jiang
- Hong Jiang
-
Affiliations: Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China - Published online on: March 4, 2015 https://doi.org/10.3892/mmr.2015.3424
- Pages: 3-12
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Alzheimer’s Association: Alzheimer’s disease facts and figures. Alzhemier’s Dement. 7:208–244. 2011. View Article : Google Scholar | |
Brookmeyer R, Johnson E, Ziegler-Graham K and Arrighi HM: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 3:186–191. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Dong Y, Maeda U, Alfille P, Culley DJ, Crosby G and Tanzi RE: The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology. 104:988–994. 2006. View Article : Google Scholar : PubMed/NCBI | |
Planel E, Bretteville A, Liu L, Virag L, Du AL, Yu WH, Dickson DW, Whittington RA and Duff KE: Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB J. 23:2595–2604. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eckenhoff RG, Johansson JS, Wei H, Carnini A, Kang B, Wei W, Pidikiti R, Keller JM and Eckenhoff MF: Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 101:703–709. 2004. View Article : Google Scholar : PubMed/NCBI | |
Le Freche H, Brouillette J, Fernandez-Gomez FJ, et al: Tau phosphorylation and sevoflurane anesthesia: An association to postoperative cognitive impairment. Anesthesiology. 116:779–787. 2012. View Article : Google Scholar : PubMed/NCBI | |
Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I and Gong CX: Anesthesia induces phosphorylation of tau. J Alzheimers Dis. 16:619–626. 2009.PubMed/NCBI | |
Tan W, Cao X, Wang J, Lv H, Wu B and Ma H: Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5% isoflurane without temperature maintenance in rats. Eur J Anaesthesiol. 27:835–841. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xie Z and Tanzi RE: Alzheimer’s disease and post-operative cognitive dysfunction. Exp Gerontol. 41:346–359. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang JX, Baranov D, Hammond M, Shaw LM, Eckenhoff MF and Eckenhoff RG: Human Alzheimer and inflammation biomarkers after anesthesia and surgery. Anesthesiology. 115:727–732. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gasparini M, Vanacore N, Schiaffini C, Brusa L, Panella M, Talarico G, Bruno G, Meco G and Lenzi GL: A case-control study on Alzheimer’s disease and exposure to anesthesia. Neurol Sci. 23:11–14. 2002. View Article : Google Scholar : PubMed/NCBI | |
Knopman DS, Petersen RC, Cha RH, Edland SD and Rocca WA: Coronary artery bypass grafting is not a risk factor for dementia or Alzheimer disease. Neurology. 65:986–990. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS and Wisniewski HM: Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 261:6084–6089. 1986.PubMed/NCBI | |
Selkoe DJ: Alzheimer’s disease: Genes, proteins, and therapy. Physiol Rev. 81:741–766. 2001.PubMed/NCBI | |
Iqbal K and Grundke-Iqbal I: Alzheimer neurofibrillary degeneration: Significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med. 12:38–55. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trojanowski JQ and Lee VM: Paired helical filament tau in Alzheimer’s disease. The kinase connection. Am J Pathol. 144:449–453. 1994.PubMed/NCBI | |
Xie Z and Xu Z: General anesthetics and β-amyloid protein. Prog Neuropsychopharmacol Biol Psychiatry. 47:140–1446. 2013. View Article : Google Scholar | |
Gu Y, Misonou H, Sato T, Dohmae N, Takio K and Ihara Y: Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gamma-secretase-like cleavage of Notch. J Biol Chem. 276:35235–35238. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sastre M, Steiner H, Fuchs K, Capell A, Multhaup G, Condron MM, Teplow DB and Haass C: Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2:835–841. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Kim SH, Ikeuchi T, Xu H, Gasparini L, Wang R and Sisodia SS: Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma-secretase processing of the APP and Notch1 transmembrane domains. J Biol Chem. 276:43756–43760. 2001. View Article : Google Scholar : PubMed/NCBI | |
Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG and Love S: Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol. 18:240–252. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL and Martins RN: Clearance mechanisms of Alzheimer’s amyloid-beta peptide: Implications for therapeutic design and diagnostic tests. Mol Psychiatry. 14:469–486. 2009. View Article : Google Scholar | |
Eckman EA and Eckman CB: Abeta-degrading enzymes: Modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans. 33:1101–1105. 2005. View Article : Google Scholar : PubMed/NCBI | |
Higuchi M, Iwata N and Saido TC: Understanding molecular mechanisms of proteolysis in Alzheimer’s disease: Progress toward therapeutic interventions. Biochim Biophys Acta. 1751:60–67. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang DS, Dickson DW and Malter JS: beta-Amyloid degradation and Alzheimer’s disease. J Biomed Biotechnol. 2006:584062006. View Article : Google Scholar | |
Turner AJ and Tanzawa K: Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 11:355–364. 1997.PubMed/NCBI | |
Turner AJ, Isaac RE and Coates D: The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. Bioessays. 23:261–269. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kanemitsu H, Tomiyama T and Mori H: Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett. 350:113–116. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ho L, Qin W, Pompl PN, et al: Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 18:902–904. 2004.PubMed/NCBI | |
Kuusisto J, Koivisto K, Mykkänen L, Helkala EL, Vanhanen M, Hänninen T, Kervinen K, Kesäniemi YA, Riekkinen PJ and Laakso M: Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: Cross sectional population based study. BMJ. 315:1045–1049. 1997. View Article : Google Scholar : PubMed/NCBI | |
Edland SD, Wavrant-De Vriesé F, Compton D, Smith GE, Ivnik R, Boeve BF, Tangalos EG and Petersen RC: Insulin degrading enzyme (IDE) genetic variants and risk of Alzheimer’s disease: Evidence of effect modification by apolipoprotein E (APOE). Neurosci Lett. 345:21–24. 2003. View Article : Google Scholar : PubMed/NCBI | |
Raber J, Huang Y and Ashford JW: ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 25:641–650. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS and Craft S: Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol. 162:313–319. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ashe KH and Zahs KR: Probing the biology of Alzheimer’s disease in mice. Neuron. 66:631–645. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sakono M and Zako T: Amyloid oligomers: Formation and toxicity of Abeta oligomers. FEBS J. 277:1348–1358. 2010. View Article : Google Scholar : PubMed/NCBI | |
Caughey B and Lansbury PT: Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 26:267–298. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haass C and Selkoe DJ: Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 8:101–112. 2007. View Article : Google Scholar : PubMed/NCBI | |
LaFerla FM, Green KN and Oddo S: Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 8:499–509. 2007. View Article : Google Scholar : PubMed/NCBI | |
Klein WL, Krafft GA and Finch CE: Targeting small Abeta oligomers: The solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24:219–224. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chiti F and Dobson CM: Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 75:333–366. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ferreira ST, Vieira MN and De Felice FG: Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life. 59:332–345. 2007. View Article : Google Scholar : PubMed/NCBI | |
Binder LI, Frankfurter A and Rebhun LI: The distribution of tau in the mammalian central nervous system. J Cell Biol. 101:1371–1378. 1985. View Article : Google Scholar : PubMed/NCBI | |
Buée L, Bussière T, Buée-Scherrer V, Delacourte A and Hof PR: Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 33:95–130. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sergeant N, Bretteville A, Hamdane M, et al: Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics. 5:207–224. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ittner LM, Ke YD, Delerue F, et al: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 142:387–397. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sultan A, Nesslany F, Violet M, et al: Nuclear tau, a key player in neuronal DNA protection. J Biol Chem. 286:4566–4575. 2011. View Article : Google Scholar : | |
Buée L, Troquier L, Burnouf S, et al: From tau phosphorylation to tau aggregation: What about neuronal death? Biochem Soc Trans. 38:967–972. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iqbal K, Liu F, Gong CX and Grundke-Iqbal I: Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 7:656–664. 2010. View Article : Google Scholar : PubMed/NCBI | |
Braak H and Braak E: Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 16:271–284. 1995. View Article : Google Scholar | |
Grober E, Dickson D, Sliwinski MJ, Buschke H, Katz M, Crystal H and Lipton RB: Memory and mental status correlates of modified Braak staging. Neurobiol Aging. 20:573–579. 1999. View Article : Google Scholar | |
Van der Jeugd A, Ahmed T, Burnouf S, et al: Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiol Learn Mem. 95:296–304. 2011. View Article : Google Scholar | |
Polydoro M, Acker CM, Duff K, Castillo PE and Davies P: Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci. 29:10741–10749. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kimura T, Yamashita S, Fukuda T, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N and Takashima A: Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. EMBO J. 26:5143–5152. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maccioni RB, Otth C, Concha II and Muñoz JP: The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. Eur J Biochem. 268:1518–1527. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tatebayashi Y, Planel E, Chui DH, et al: c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis. FASEB J. 20:762–764. 2006.PubMed/NCBI | |
Feinstein SC and Wilson L: Inability of tau to properly regulate neuronal microtubule dynamics: A loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta. 1739:268–279. 2005. View Article : Google Scholar | |
Mandelkow EM, Stamer K, Vogel R, Thies E and Mandelkow E: Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging. 24:1079–1085. 2003. View Article : Google Scholar : PubMed/NCBI | |
Trojanowski JQLV and Lee VM: Paired helical filament tau in Alzheimer’s disease. The kinase connection Am J Pathol. 144:449–453. 1994. | |
Terry RD: The pathogenesis of Alzheimer disease: An alternative to the amyloid hypothesis. J Neuropathol Exp Neurol. 55:1023–1025. 1996. View Article : Google Scholar : PubMed/NCBI | |
Guillozet AL, Weintraub S, Mash DC and Mesulam MM: Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol. 60:729–736. 2003. View Article : Google Scholar : PubMed/NCBI | |
Small SA and Duff K: Linking Abeta and tau in late-onset Alzheimer’s disease: A dual pathway hypothesis. Neuron. 60:534–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hardy J and Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tanzi RE and Bertram L: Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell. 120:545–555. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Shepardson N, Yang T, Chen G, Walsh D and Selkoe DJ: Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 108:5819–5824. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma QL, Yang F, Rosario ER, et al: β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: Suppression by omega-3 fatty acids and curcumin. J Neurosci. 29:9078–9089. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y and LaFerla FM: Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron. 39:409–421. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bertram L and Tanzi RE: Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat Rev Neurosci. 9:768–778. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Wang Q, Li Y, Kang B, Eckenhoff MF, Eckenhoff RG and Wei H: A presenilin-1 mutation renders neurons vulnerable to isoflurane toxicity. Anesth Analg. 106:492–500. 2008. View Article : Google Scholar : PubMed/NCBI | |
Filali M, Lalonde R, Theriault P, Julien C, Calon F and Planel E: Cognitive and non-cognitive behaviors in the triple transgenic mouse model of Alzheimer’s disease expressing mutated APP, PS1, and Mapt (3xTg-AD). Behav Brain Res. 234:334–342. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perucho J, Rubio I, Casarejos MJ, Gomez A, Rodriguez-Navarro JA, Solano RM, De Yébenes JG and Mena MA: Anesthesia with isoflurane increases amyloid pathology in mice models of Alzheimer’s disease. J Alzheimers Dis. 19:1245–1257. 2010. | |
Lu Y, Wu X, Dong Y, Xu Z, Zhang Y and Xie Z: Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice. Anesthesiology. 112:1404–1416. 2010. View Article : Google Scholar : PubMed/NCBI | |
Prince JA, Feuk L, Gu HF, Johansson B, Gatz M, Blennow K and Brookes AJ: Genetic variation in a haplotype block spanning IDE influences Alzheimer disease. Hum Mutat. 22:363–371. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ertekin-Taner N, Allen M, Fadale D, Scanlin L, Younkin L, Petersen RC, Graff-Radford N and Younkin SG: Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum Mutat. 23:334–342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Dong Y, Maeda U, Moir RD, Xia W, Culley DJ, Crosby G and Tanzi RE: The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. J Neurosci. 27:1247–1254. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Dong Y, Maeda U, Moir R, Inouye SK, Culley DJ, Crosby G and Tanzi RE: Isoflurane-induced apoptosis: A potential pathogenic link between delirium and dementia. J Gerontol A Biol Sci Med Sci. 61:1300–1306. 2006. View Article : Google Scholar | |
Xie Z, Culley DJ, Dong Y, Zhang G, Zhang B, Moir RD, Frosch MP, Crosby G and Tanzi RE: The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol. 64:618–627. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Tian M, Zheng H, Zhen Y, Yue Y, Li T, Li S, Marcantonio ER and Xie Z: Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid Aβ and τ level. Anesthesiology. 119:52–60. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Xu Z, Zhang Y, McAuliffe S, Wang H, Shen X, Yue Y and Xie Z: RNA interference-mediated silencing of BACE and APP attenuates the isoflurane-induced caspase activation. Med Gas Res. 1:52011. View Article : Google Scholar : PubMed/NCBI | |
Zhen Y, Dong Y, Wu X, Xu Z, Lu Y, Zhang Y, Norton D, Tian M, Li S and Xie Z: Nitrous oxide plus isoflurane induces apoptosis and increases β-amyloid protein levels. Anesthesiology. 111:741–752. 2009. View Article : Google Scholar : PubMed/NCBI | |
Su D, Zhao Y, Xu H, Wang B, Chen X, Chen J and Wang X: Isoflurane exposure during mid-adulthood attenuates age-related spatial memory impairment in APP/PS1 transgenic mice. PLoS One. 7:e501722012. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Zhang G, Zhang B, Moir RD, Xia W, Marcantonio ER, Culley DJ, Crosby G, Tanzi RE and Xie Z: The common inha-lational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol. 66:620–631. 2009. View Article : Google Scholar : PubMed/NCBI | |
Callaway JK, Jones NC, Royse AG and Royse CF: Sevoflurane anesthesia does not impair acquisition learning or memory in the Morris water maze in young adult and aged rats. Anesthesiology. 117:1091–1101. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen CW, Lin WY, Chen KB, Wu YS, Kuo YC, Liu HP and Li CY: Inhalational anesthetic sevoflurane rescues retina function in Alzheimer’s disease transgenic Drosophila. Curr Alzheimer Res. 10:1005–1014. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Dong Y, Zhang G, et al: The inhalation anesthetic desflurane induces caspase activation and increases amyloid beta-protein levels under hypoxic conditions. J Biol Chem. 283:11866–11875. 2008. View Article : Google Scholar : PubMed/NCBI | |
Loop T, Dovi-Akue D, Frick M, et al: Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 102:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yu Y and Zhang Y: Desflurane accelerates neuronal cytotoxicity of Aβ by downregulating miR-214. Neurosci Lett. 554:28–33. 2013. View Article : Google Scholar : PubMed/NCBI | |
Culley DJ, Baxter MG, Yukhananov R and Crosby G: Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 100:309–314. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kvolik S, Glavas-Obrovac L, Bares V and Karner I: Effects of inhaled anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci. 77:2369–2383. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Kang B, Wei W, Liang G, Meng QC, Li Y and Eckenhoff G: Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 1037:139–147. 2005. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka H, Kurosawa S, Horinouchi T, Kato M and Hashimoto Y: Inhaled anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology. 95:1467–1472. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, et al: Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology. 112:834–841. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Liang G, Yang H, Wang Q, Hawkins B, Madesh M, Wang S and Eckenhoff RG: The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology. 108:251–260. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Dong Y, Zhang B, Ichinose F, Wu X, Culley DJ, Crosby G, Tanzi RE and Xie Z: Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci. 28:4551–4560. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Dong Y, Zhang B, Ichinose F, Wu X, Culley DJ, Crosby G, Tanzi RE and Xie Z: Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci. 28:4551–4560. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xu Z, Wang H, Dong Y, Shi HN, Culley DJ, Crosby G, Marcantonio ER, Tanzi RE and Xie Z: Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol. 71:687–698. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A, Yue Y, Xu T and Xie Z: The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem. 285:4025–4037. 2010. View Article : Google Scholar : | |
Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, Gomes O, Laferla FM, Eckenhoff RG and Eckenhoff MF: Anesthesia in presymptomatic Alzheimer’s disease: A study using the triple-transgenic mouse model. Alzheimers Dement. 7:521–531.e1. 2011. View Article : Google Scholar | |
Dong Y, Wu X, Xu Z, Zhang Y and Xie Z: Anesthetic isoflurane increases phosphorylated tau levels mediated by caspase activation and Aβ generation. PLoS One. 7:e393862012. View Article : Google Scholar | |
Planel E, Richter KE, Nolan CE, et al: Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci. 27:3090–3097. 2007. View Article : Google Scholar : PubMed/NCBI | |
Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y and Takashima A: Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: Implications for Alzheimer’s disease. J Neurosci. 24:2401–2411. 2004. View Article : Google Scholar : PubMed/NCBI | |
Holtzman A and Simon EW: Body temperature as a risk factor for Alzheimer’s disease. Med Hypotheses. 55:440–444. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Xu J, Wang H, et al: Isoflurane-induced spatial memory impairment by a mechanism independent of amyloid-beta levels and tau protein phosphorylation changes in aged rats. Neurol Res. 34:3–10. 2012. View Article : Google Scholar | |
Menuet C, Borghgraef P, Voituron N, Gestreau C, Gielis L, Devijver H, Dutschmann M, Van Leuven F and Hilaire G: Isoflurane anesthesia precipitates tauopathy and upper airways dysfunction in pre-symptomatic Tau.P301L mice: Possible implication for neurodegenerative diseases. Neurobiol Dis. 46:234–243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Tian M, Zhen Y, Yue Y, Sherman J, Zheng H, Li S, Tanzi RE, Marcantonio ER and Xie Z: The effects of isoflurane and desflurane on cognitive function in humans. Anesth Analg. 114:410–415. 2012. View Article : Google Scholar | |
Bianchi SL, Tran T, Liu C, Lin S, Li Y, Keller JM, Eckenhoff RG and Eckenhoff MF: Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging. 29:1002–1010. 2008. View Article : Google Scholar | |
Wan Y, Xu J, Meng F, et al: Cognitive decline following major surgery is associated with gliosis, β-amyloid accumulation, and τ phosphorylation in old mice. Crit Care Med. 38:2190–2198. 2010. View Article : Google Scholar : PubMed/NCBI |