1
|
Ha E: Cyanate attenuates insulin secretion
in cultured pancreatic β cells. Mol Med Rep. 5:1461–1464.
2012.PubMed/NCBI
|
2
|
Ok E, Basnakian AG, Apostolov EO, et al:
Carbamylated low-density lipoprotein induces death of endothelial
cells: a link to atherosclerosis in patients with kidney disease.
Kidney Int. 68:173–178. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Abe T, Isaka Y, Imamura R, et al:
Carbamylated erythropoietin ameliorates cyclosporine nephropathy
without stimulating eryth-ropoiesis. Cell Transplant. 21:571–580.
2012. View Article : Google Scholar
|
4
|
Tang Z, Sun X, Shi Q, et al: Beneficial
effects of carbamylated erythropoietin against oxygen-glucose
deprivation/reperfusion-induced astrocyte swelling: proposed
molecular mechanisms of action. Neurosci Lett. 530:23–28. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Jaisson S, Delevallée-Forte C, Touré F, et
al: Carbamylated albumin is a potent inhibitor of polymorphonuclear
neutrophil respiratory burst. FEBS Lett. 581:1509–1513. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Son JN, Lho Y, Shin S, et al: Carbamylated
low-density lipoprotein increases reactive oxygen species (ROS) and
apoptosis via lectin-like oxidized LDL receptor (LOX-1) mediated
pathway in human umbilical vein endothelial cells. Int J Cardiol.
146:428–430. 2011. View Article : Google Scholar
|
7
|
Hörkkö S, Huttunen K, Kervinen K, et al:
Decreased clearance of uraemic and mildly carbamylated low-density
lipoprotein. Eur J Clin Invest. 24:105–113. 1994. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kraus LM and Kraus AP Jr: Carbamoylation
of amino acids and proteins in uremia. Kidney Int Suppl.
78:S102–S107. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang Z, Nicholls SJ, Rodriguez ER, et al:
Protein carbamylation links inflammation, smoking, uremia and
atherogenesis. Nat Med. 13:1176–1184. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Heilman K, Zilmer M, Zilmer K, et al:
Arterial stiffness, carotid artery intima-media thickness and
plasma myeloperoxidase level in children with type 1 diabetes.
Diabetes Res Clin Pract. 84:168–173. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wiersma JJ, Meuwese MC, van Miert JN, et
al: Diabetes mellitus type 2 is associated with higher levels of
myeloperoxidase. Med Sci Monit. 14:CR406–CR410. 2008.PubMed/NCBI
|
12
|
Moller DE: New drug targets for type 2
diabetes and the metabolic syndrome. Nature. 414:821–827. 2001.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yea K, Kim J, Yoon JH, et al:
Lysophosphatidylcholine activates adipocyte glucose uptake and
lowers blood glucose levels in murine models of diabetes. J Biol
Chem. 284:33833–33840. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fam BC, Rose LJ, Sgambellone R, et al:
Normal muscle glucose uptake in mice deficient in muscle GLUT4. J
Endocrinol. 214:313–327. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ha E, Bang JH, Son JN, et al: Carbamylated
albumin stimulates microRNA-146, which is increased in human renal
cell carcinoma. Mol Med Rep. 3:275–279. 2010.
|
16
|
Lautamäki R, Rönnemaa T, Huupponen R, et
al: Low serum adiponectin is associated with high circulating
oxidized low-density lipoprotein in patients with type 2 diabetes
mellitus and coronary artery disease. Metabolism. 56:881–886. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Apostolov EO, Shah SV, Ok E, et al:
Quantification of carbamylated LDL in human sera by a new sandwich
ELISA. Clin Chem. 51:719–728. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Apostolov EO, Ray D, Savenka AV, et al:
Chronic uremia stimulates LDL carbamylation and atherosclerosis. J
Am Soc Nephrol. 21:1852–1857. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Apostolov EO, Basnakian AG, Ok E and Shah
SV: Carbamylated low-density lipoprotein: nontraditional risk
factor for cardiovascular events in patients with chronic kidney
disease. J Ren Nutr. 22:134–138. 2012. View Article : Google Scholar
|
20
|
Apostolov EO, Shah SV, Ok E and Basnakian
AG: Carbamylated low-density lipoprotein induces monocyte adhesion
to endothelial cells through intercellular adhesion molecule-1 and
vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol.
27:826–832. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Asci G, Basci A, Shah SV, et al:
Carbamylated low-density lipoprotein induces proliferation and
increases adhesion molecule expression of human coronary artery
smooth muscle cells. Nephrology (Carlton). 13:480–486. 2008.
View Article : Google Scholar
|
22
|
Apostolov EO, Shah SV, Ray D and Basnakian
AG: Scavenger receptors of endothelial cells mediate the uptake and
cellular proatherogenic effects of carbamylated LDL. Arterioscler
Thromb Vasc Biol. 29:1622–1630. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shiu SW, Xiao SM, Wong Y, et al:
Carbamylation of LDL and its relationship with myeloperoxidase in
type 2 diabetes mellitus. Clin Sci (Lond). 126:175–181. 2014.
View Article : Google Scholar
|
24
|
Wallberg-Henriksson H and Zierath JR:
GLUT4: a key player regulating glucose homeostasis? Insights from
transgenic and knockout mice (review). Mol Membr Biol. 18:205–211.
2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kapur S, Bedard S, Marcotte B, et al:
Expression of nitric oxide synthase in skeletal muscle: a novel
role for nitric oxide as a modulator of insulin action. Diabetes.
46:1691–1700. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Perreault M and Marette A: Targeted
disruption of inducible nitric oxide synthase protects against
obesity-linked insulin resistance in muscle. Nat Med. 7:1138–1143.
2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Charbonneau A and Marette A: Inducible
nitric oxide synthase induction underlies lipid-induced hepatic
insulin resistance in mice: potential role of tyrosine nitration of
insulin signaling proteins. Diabetes. 59:861–871. 2010. View Article : Google Scholar : PubMed/NCBI
|