1
|
Jonasch E and Haluska FG: Interferon in
oncological practice: review of interferon biology, clinical
applications and toxicities. Oncologist. 6:34–55. 2001. View Article : Google Scholar
|
2
|
Belardelli F: Role of interferons and
other cytokines in the regulation of the immune response. APMIS.
103:161–179. 1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
Biron CA, Nguyen KB, Pien GC, Cousens LP
and Salazar-Mather TP: Natural killer cells in antiviral defense:
function and regulation by innate cytokines. Annu Rev Immunol.
17:189–220. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bogdan C: The function of type I
interferons in antimicrobial immunity. Curr Opin Immunol.
12:419–424. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jelkmann W: Erythropoietin after a century
of research: younger than ever. Eur J Haematol. 78:183–205. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Neumann E: Regulation of erythropoiesis.
Acta Med Austriaca Supp. 6:360–363. 1979.In German.
|
7
|
Argenti M: Hematosis and erythropoiesis in
guinea pigs exposed to low oxygen pressure. Riv Med Aeronaut.
14:283–313. 1951.In Undetermined Language. PubMed/NCBI
|
8
|
Jelkmann W: Regulation of erythropoietin
production. J Physiol. 589:1251–1258. 2011. View Article : Google Scholar :
|
9
|
Macdougall IC and Ashenden M: Current and
upcoming erythropoiesis-stimulating agents, iron products and other
novel anemia medications. Adv Chronic Kidney Dis. 16:117–130. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang X and Carter MG: Transgenic animal
bioreactors: a new line of defense against chemical weapons? Proc
Natl Acad Sci USA. 104:13859–13860. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Baneyx F: Recombinant protein expression
in Escherichia coli. Curr Opin Biotechnol. 10:411–421. 1999.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ebert KM, Selgrath JP, DiTullio P, et al:
Transgenic production of a variant of human tissue-type plasminogen
activator in goat milk: generation of transgenic goats and analysis
of expression. Biotechnology (NY). 9:835–838. 1991. View Article : Google Scholar
|
13
|
Krimpenfort P, Rademakers A, Eyestone W,
et al: Generation of transgenic dairy cattle using ‘in vitro’
embryo production. Biotechnology (NY). 9:844–847. 1991. View Article : Google Scholar
|
14
|
Buhler TA, Bruyere T, Went DF, Stranzinger
G and Burki K: Rabbit beta-casein promoter directs secretion of
human interleukin-2 into the milk of transgenic rabbits.
Biotechnology (NY). 8:140–143. 1990. View Article : Google Scholar
|
15
|
Cerdan MG, Young JI, Zino E, et al:
Accurate spatial and temporal transgene expression driven by a
3.8-kilobase promoter of the bovine beta-casein gene in the
lactating mouse mammary gland. Mol Reprod Dev. 49:236–245. 1998.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ebert KM, DiTullio P, Barry CA, et al:
Induction of human tissue plasminogen activator in the mammary
gland of transgenic goats. Biotechnology (NY). 12:699–702. 1994.
View Article : Google Scholar
|
17
|
Gordon K, Lee E, Vitale JA, Smith AE,
Westphal H and Hennighausen L: Production of human tissue
plasminogen activator in transgenic mouse milk. 1987.
Biotechnology. 24:425–428. 1992.PubMed/NCBI
|
18
|
Ikonen T, Ojala M and Ruottinen O:
Associations between milk protein polymorphism and first lactation
milk production traits in Finnish Ayrshire Cows. J Dairy Sci.
82:1026–1033. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Buser AC, Gass-Handel EK, Wyszomierski SL,
et al: Progesterone receptor repression of prolactin/signal
transducer and activator of transcription 5-mediated transcription
of the beta-casein gene in mammary epithelial cells. Mol
Endocrinol. 21:106–125. 2007. View Article : Google Scholar
|
20
|
Doppler W, Windegger M, Soratroi C, et al:
Expression level-dependent contribution of glucocorticoid receptor
domains for functional interaction with STAT5. Mol Cell Biol.
21:3266–3279. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Raught B, Liao WS and Rosen JM:
Developmentally and hormonally regulated CCAAT/enhancer-binding
protein isoforms influence beta-casein gene expression. Mol
Endocrinol. 9:1223–1232. 1995.PubMed/NCBI
|
22
|
Malewski T and Zwierzchowski L:
Computer-aided analysis of potential transcription-factor binding
sites in the rabbit beta-casein gene promoter. Biosystems.
36:109–119. 1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rosen JM, Rodgers JR, Couch CH, et al:
Multihormonal regulation of milk protein gene expression. Ann NY
Acad Sci. 478:63–76. 1986. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rosen JM, Wyszomierski SL and Hadsell D:
Regulation of milk protein gene expression. Annu Rev Nutr.
19:407–436. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hodges VM, Rainey S, Lappin TR and Maxwell
AP: Pathophysiology of anemia and erythrocytosis. Crit Rev Oncol
Hematol. 64:139–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gossen M and Bujard H: Tight control of
gene expression in mammalian cells by tetracycline-responsive
promoters. Proc Natl Acad Sci USA. 89:5547–5551. 1992. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou X, Vink M, Klaver B, Berkhout B and
Das AT: Optimization of the Tet-On system for regulated gene
expression through viral evolution. Gene Ther. 13:1382–1390. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Gossen M, Freundlieb S, Bender G, Müller
G, Hillen W and Bujard H: Transcriptional activation by
tetracyclines in mammalian cells. Science. 268:1766–1769. 1995.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Jung EM, An BS, Kim YK, et al:
Establishment of transgenic fibroblasts for producing recombinant
human interferon-α and erythropoietin in bovine milk. Mol Med Rep.
7:406–412. 2013.
|
30
|
Wang CJ, Xiao CW, You TG, et al:
Interferon-alpha enhances antitumor activities of oncolytic
adenovirus-mediated IL-24 expression in hepatocellular carcinoma.
Mol Cancer. 11:312012. View Article : Google Scholar
|
31
|
Biron CA: Interferons alpha and beta as
immune regulators - a new look. Immunity. 14:661–664. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gallucci S, Lolkema M and Matzinger P:
Natural adjuvants: endogenous activators of dendritic cells. Nat
Med. 5:1249–1255. 1999. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Son YD, Jeong YT, Park SY and Kim JH:
Enhanced sialylation of recombinant human erythropoietin in Chinese
hamster ovary cells by combinatorial engineering of selected genes.
Glycobiology. 21:1019–1028. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tuite MF, Dobson MJ, Roberts NA, et al:
Regulated high efficiency expression of human interferon-alpha in
Saccharomyces cerevisiae. EMBO J. 1:603–608. 1982.PubMed/NCBI
|
35
|
Wall RJ, Kerr DE and Bondioli KR:
Transgenic dairy cattle: genetic engineering on a large scale. J
Dairy Sci. 80:2213–2224. 1997. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zuelke KA: Transgenic modification of cows
milk for value-added processing. Reprod Fertil Dev. 10:671–676.
1998. View
Article : Google Scholar
|
37
|
Huynh HT, Robitaille G and Turner JD:
Establishment of bovine mammary epithelial cells (MAC-T): an in
vitro model for bovine lactation. Exp Cell Res. 197:191–199. 1991.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Berry SD, Weber Nielsen MS, Sejrsen K,
Pearson RE, Boyle PL and Akers RM: Use of an immortalized bovine
mammary epithelial cell line (MAC-T) to measure the mitogenic
activity of extracts from heifer mammary tissue: effects of
nutrition and ovariectomy. Domest Anim Endocrinol. 25:245–253.
2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Baguisi A, Behboodi E, Melican DT, et al:
Production of goats by somatic cell nuclear transfer. Nat
Biotechnol. 17:456–461. 1999. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Kubota C, Yamakuchi H, Todoroki J, et al:
Six cloned calves produced from adult fibroblast cells after
long-term culture. Proc Natl Acad Sci USA. 97:990–995. 2000.
View Article : Google Scholar : PubMed/NCBI
|