1
|
Dassanayaka S and Jones SP: O-GlcNAc and
the cardiovascular system. Pharmacol Ther. 142:62–71. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Shaf R, Iyer SP, Ellies LG, O’Donnell N,
Marek KW, Chui D, et al: The O-GlcNAc transferase gene resides on
the X chromosome and is essential for embryonic stem cell viability
and mouse ontogeny. Proc Natl Acad Sci USA. 97:5735–5739. 2000.
View Article : Google Scholar
|
3
|
Watson LJ, Facundo HT, Ngoh GA, Ameen M,
Brainard RE, Lemma KM, et al: O-linked beta-N-acetylglucosamine
transferase is indispensable in the failing heart. Proc Natl Acad
Sci USA. 107:17797–17802. 2010. View Article : Google Scholar
|
4
|
Mann DL and Bristow MR: Mechanisms and
models in heart failure: the biomechanical model and beyond.
Circulation. 111:2837–2849. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Seidman JG and Seidman C: The genetic
basis for cardiomyopathy: from mutation identification to
mechanistic paradigms. Cell. 104:557–567. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Januzzi JL, van Kimmenade R, Lainchbury J,
Bayes-Genis A, Ordonez-Llanos J, Santalo-Bel M, et al: NT-proBNP
testing for diagnosis and short-term prognosis in acute
destabilized heart failure: an international pooled analysis of
1256 patients: the International Collaborative of NT-proBNP Study.
Eur Heart J. 27:330–337. 2006. View Article : Google Scholar
|
7
|
van Kimmenade RR, Pinto YM and Januzzi JL
Jr: Importance and interpretation of intermediate (gray zone)
amino-terminal pro-B-type natriuretic peptide concentrations. Am J
Cardiol. 101:39–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
van Rooij E, Marshall WS and Olson EN:
Toward microRNA-based therapeutics for heart disease: the sense in
antisense. Circ Res. 103:919–928. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
et al: Characterization of microRNAs in serum: a novel class of
biomarkers for diagnosis of cancer and other diseases. Cell Res.
18:997–1006. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lawrie CH, Gal S, Dunlop HM, Pushkaran B,
Liggins AP, Pulford K, et al: Detection of elevated levels of
tumour-associated microRNAs in serum of patients with diffuse large
B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR,
Wyman SK, Pogosova-Agadjanyan EL, et al: Circulating microRNAs as
stable blood-based markers for cancer detection. Proc Natl Acad Sci
USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Thum T, Galuppo P, Wolf C, Fiedler J,
Kneitz S, van Laake LW, et al: MicroRNAs in the human heart: a clue
to fetal gene reprogramming in heart failure. Circulation.
116:258–267. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tijsen AJ, Creemers EE, Moerland PD, de
Windt LJ, van der Wal AC, Kok WE, et al: MiR423-5p as a circulating
biomarker for heart failure. Circ Res. 106:1035–1039. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bauters C, Kumarswamy R, Holzmann A,
Bretthauer J, Anker SD, Pinet F, et al: Circulating miR-133a and
miR-423-5p fail as biomarkers for left ventricular remodeling after
myocardial infarction. Int J Cardiol. 168:1837–1840. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Tutarel O, Dangwal S, Bretthauer J,
Westhoff-Bleck M, Roentgen P, Anker SD, et al: Circulating
miR-423_5p fails as a biomarker for systemic ventricular function
in adults after atrial repair for transposition of the great
arteries. Int J Cardiol. 167:63–66. 2013. View Article : Google Scholar
|
17
|
Fekete MR, McBride WH and Pajonk F:
Anthracyclines, proteasome activity and multi-drug-resistance. BMC
Cancer. 5:1142005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rosamond WD, Chang PP, Baggett C, et al:
Classification of heart failure in the atherosclerosis risk in
communities (ARIC) study: A comparsion of diagnostic criteria. Circ
Heart Fail. 5:152–159. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang C, Liu Z, Liu K and Yang P:
Mechanisms of Ghrelin anti-heart failure: Inhibition of Ang
II-induced cardiomyocyte apoptosis by down-regulating AT1R
expression. PLoS One. 9:e857852014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J,
et al: Circulating microRNA-1 as a potential novel biomarker for
acute myocardial infarction. Biochem Biophys Res Commun. 391:73–77.
2010. View Article : Google Scholar
|
21
|
Ji X, Takahashi R, Hiura Y, Hirokawa G,
Fukushima Y and Iwai N: Plasma miR-208 as a biomarker of myocardial
injury. Clin Chem. 55:1944–1949. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dassanayaka S and Jones SP: O-GlcNAc and
the cardiovascular system. Pharmacol Ther. 142:62–71. 2014.
View Article : Google Scholar :
|
23
|
Shaf R, Iyer SP, Ellies LG, O’Donnell N,
Marek KW, Chui D, et al: The O-GlcNAc transferase gene resides on
the X chromosome and is essential for embryonic stem cell viability
and mouse ontogeny. Proc Natl Acad Sci USA. 97:5735–5739. 2000.
View Article : Google Scholar
|
24
|
Watson LJ, Facundo HT, Ngoh GA, Ameen M,
Brainard RE, Lemma KM, et al: O-linked beta-N-acetylglucosamine
transferase is indispensable in the failing heart. Proc Natl Acad
Sci USA. 107:17797–17802. 2010. View Article : Google Scholar
|
25
|
Hardie DG: AMPK and Raptor: matching cell
growth to energy supply. Mol Cell. 30:263–265. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zou MH and Wu Y: AMP-activated protein
kinase activation as a strategy for protecting vascular endothelial
function. Clin Exp Pharmacol Physiol. 35:535–545. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu J, Wang S, Viollet B and Zou MH:
Regulation of the proteasome by AMPK in endothelial cells: the role
of O-GlcNAc transferase (OGT). PloS one. 7:e367172012. View Article : Google Scholar : PubMed/NCBI
|