1
|
Böhle AS and Kalthoff H: Molecular
mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch
Surg. 384:133–140. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Miller AJ and Mihm MC Jr: Melanoma. N Engl
J Med. 355:51–65. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Torzilli PA, Bourne JW, Cigler T and
Vincent CT: A new paradigm for mechanobiological mechanisms in
tumor metastasis. Semin Cancer Biol. 22:385–395. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Perlikos F, Harrington KJ and Syrigos KN:
Key molecular mechanisms in lung cancer invasion and metastasis: a
comprehensive review. Crit Rev Oncol Hematol. 87:1–11. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Gao XH, Yang XQ, Wang BC, Liu SP and Wang
FB: Overexpression of twist and matrix metalloproteinase-9 with
metastasis and prognosis in gastric cancer. Asian Pac J Cancer
Prev. 14:5055–5060. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shuman Moss LA, Jensen-Taubman S and
Stetler-Stevenson WG: Matrix metalloproteinases: changing roles in
tumor progression and metastasis. Am J Pathol. 181:1895–1899. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Bolkun L, Lemancewicz D, Sobolewski K,
Mantur M, Semeniuk J, Kulczynska A, Kloczko J and Dzieciol J: The
evaluation of angiogenesis and matrix metalloproteinase-2 secretion
in bone marrow of multiple myeloma patients before and after the
treatment. Adv Med Sci. 58:118–125. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vandooren J, Van den Steen PE and
Opdenakker G: Biochemistry and molecular biology of gelatinase B or
matrix metallopro-teinase-9 (MMP-9): the next decade. Crit Rev
Biochem Mol Biol. 48:222–272. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Monsonego-Ornan E, Kosonovsky J, Bar A,
Roth L, Fraggi-Rankis V, Simsa S, Kohl A and Sela-Donenfeld D:
Matrix metalloproteinase 9/gelatinase B is required for neural
crest cell migration. Dev Biol. 364:162–177. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Frankowski H, Gu YH, Heo JH, Milner R and
Del Zoppo GJ: Use of gel zymography to examine matrix
metalloproteinase (gelatinase) expression in brain tissue or in
primary glial cultures. Methods Mol Biol. 814:221–233. 2012.
|
11
|
Sun Y, Lu N, Ling Y, Gao Y, Chen Y, Wang
L, Hu R, Qi Q, Liu W, Yang Y, You Q and Guo Q: Oroxylin A
suppresses invasion through down-regulating the expression of
matrix metallopro-teinase-2/9 in MDA-MB-435 human breast cancer
cells. Eur J Pharmacol. 603:22–28. 2009. View Article : Google Scholar
|
12
|
Jin ML, Park SY, Kim YH, Park G and Lee
SJ: Halofuginone induces the apoptosis of breast cancer cells and
inhibits migration via downregulation of matrix
metalloproteinase-9. Int J Oncol. 44:309–318. 2014.
|
13
|
Liao CL, Lin JH, Lien JC, Hsu SC, Chueh
FS, Yu CC, Wu PP, Huang YP, Lin JG and Chung JG: The crude extract
of Corni Fructus inhibits the migration and invasion of U-2 OS
human osteosarcoma cells through the inhibition of matrix
metallopro-teinase-2/-9 by MAPK signaling. Environ Toxicol.
30:53–63. 2015. View Article : Google Scholar
|
14
|
Cheng Y, Zhang G and Li G: Targeting MAPK
pathway in melanoma therapy. Cancer Metastasis Rev. 32:567–584.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen T, Heo SI and Wang MH: Involvement of
the p38 MAPK and ERK signaling pathway in the anti-melanogenic
effect of methyl 3,5-dicaffeoyl quinate in B16F10 mouse melanoma
cells. Chem Biol Interact. 199:106–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Davidson B, Givant-Horwitz V, Lazarovici
P, Risberg B, Nesland JM, Trope CG, Schaefer E and Reich R: Matrix
metalloproteinases (MMP), EMMPRIN (extracellular matrix
metalloproteinase inducer) and mitogen-activated protein kinases
(MAPK): co-expression in metastatic serous ovarian carcinoma. Clin
Exp Metastasis. 20:621–631. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu KC, Yang ST, Hsia TC, Yang JS, Chiou
SM, Lu CC, Wu RS and Chung JG: Suppression of cell invasion and
migration by propofol are involved in down-regulating matrix
metalloproteinase-2 and p38 MAPK signaling in A549 human lung
adenocarcinoma epithelial cells. Anticancer Res. 32:4833–4842.
2012.PubMed/NCBI
|
18
|
Chen M, Du Y, Qui M, Wang M, Chen K, Huang
Z, Jiang M, Xiong F, Chen J, Zhou J, Jiang F, et al: Ophiopogonin
B-induced autophagy in non-small cell lung cancer cells via
inhibition of the PI3K/Akt signaling pathway. Oncol Rep.
29:430–436. 2013.
|
19
|
Li N, Zhang L, Zeng KW, Zhou Y, Zhang JY,
Che YY and Tu PF: Cytotoxic steroidal saponins from Ophiopogon
japonicus. Steroids. 78:1–7. 2013. View Article : Google Scholar
|
20
|
Lan S, Yi F, Shuang L, Chenjie W and Zheng
XW: Chemical constituents from the fibrous root of Ophiopogon
japonicus and their effect on tube formation in human myocardial
micro-vascular endothelial cells. Fitoterapia. 85:57–63. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang Y, Liu J, Kou J, Yu J and Yu B:
DT-13 suppresses MDA-MB-435 cell adhesion and invasion by
inhibiting MMP-2/9 via the p38 MAPK pathway. Mol Med Rep.
6:1121–1125. 2012.PubMed/NCBI
|
22
|
Yu BY, Qiu SX, Zaw K, Xu GJ, Hirai Y,
Shoji J, Fong HH and Kinghorn AD: Steroidal glycosides from the
subterranean parts of Liriope spicata var. prolifera.
Phytochemistry. 43:201–206. 1996. View Article : Google Scholar : PubMed/NCBI
|
23
|
Qian J, Jiang F, Wang B, Yu Y, Zhang X,
Yin Z and Liu C: Ophiopogonin D prevents H2O2-induced injury in
primary human umbilical vein endothelial cells. J Ethnopharmacol.
128:438–445. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kou J, Tian Y, Tang Y, Yan J and Yu B:
Antithrombotic activities of aqueous extract from Radix Ophiopogon
japonicus and its two constituents. Biol Pharm Bull. 29:1267–1270.
2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kou J, Sun Y, Lin Y, Cheng Z, Zheng W, Yu
B and Xu Q: Anti-inflammatory activities of aqueous extract from
Radix Ophiopogon japonicus and its two constituents. Biol Pharm
Bull. 28:1234–1238. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang YL, Kou JP, Ma L, Song JX and Yu BY:
Possible mechanism of the anti-inflammatory activity of ruscogenin:
role of intercellular adhesion molecule-1 and nuclear
factor-kappaB. J Pharmacol Sci. 108:198–205. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Asano T, Murayama T, Hirai Y and Shoji J:
Comparative studies on the constituents of ophiopogonis tuber and
its congeners. VIII Studies on the glycosides of the subterranean
part of Ophiopogon japonicus Ker-Gawler cv. Nanus. Chem Pharm Bull
(Tokyo). 41:566–570. 1993. View Article : Google Scholar
|
28
|
Jones J, Marian D, Weich E, Engl T, Wedel
S, Relja B, Jonas D and Blaheta RA: CXCR4 chemokine receptor
engagement modifies integrin dependent adhesion of renal carcinoma
cells. Exp Cell Res. 313:4051–4065. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lu ZJ, Ren YQ, Wang GP, Song Q, Li M,
Jiang SS, Ning T, Guan YS, Yang JL and Luo F: Biological behaviors
and proteomics analysis of hybrid cell line EAhy926 and its parent
cell line A549. J Exp Clin Cancer Res. 28:162009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen HW, Lee JY, Huang JY, Wang CC, Chen
WJ, Su SF, Huang CW, Ho CC, Chen JJ, Tsai MF, Yu SL and Yang PC:
Curcumin inhibits lung cancer cell invasion and metastasis through
the tumor suppressor HLJ1. Cancer Res. 68:7428–7438. 2008.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hung SH, Shen KH, Wu CH, Liu CL and Shih
YW: Alpha-mangostin suppresses PC-3 human prostate carcinoma cell
metastasis by inhibiting matrix metalloproteinase-2/9 and
urokinase-plasminogen expression through the JNK signaling pathway.
J Agric Food Chem. 57:1291–1298. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kupai K, Szucs G, Cseh S, Hajdu I, Csonka
C, Csont T and Ferdinandy P: Matrix metalloproteinase activity
assays: Importance of zymography. J Pharmacol Toxicol Methods.
61:205–209. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hwang ES and Park KK: Magnolol suppresses
metastasis via inhibition of invasion, migration and matrix
metallopro-teinase-2/-9 activities in PC-3 human prostate carcinoma
cells. Biosci Biotechnol Biochem. 74:961–967. 2010. View Article : Google Scholar
|
34
|
Song C, Zhu S, Wu C and Kang J: Histone
deacetylase (HDAC) 10 suppresses cervical cancer metastasis through
inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J
Biol Chem. 288:28021–28033. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ho YL, Li KC, Chao W, Chang YS and Huang
GJ: Korean red ginseng suppresses metastasis of human hepatoma
SK-Hep1 cells by inhibiting matrix metalloproteinase-2/-9 and
urokinase plasminogen activator. Evid Based Complement Alternat
Med. 2012:9658462012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Geho DH, Bandle RW, Clair T and Liotta LA:
Physiological mechanisms of tumor-cell invasion and migration.
Physiology (Bethesda). 20:194–200. 2005. View Article : Google Scholar
|
37
|
Wu D, Huang P, Wang L, Zhou Y, Pan H and
Qu P: MicroRNA-143 inhibits cell migration and invasion by
targeting matrix metalloproteinase 13 in prostate cancer. Mol Med
Rep. 8:626–630. 2013.PubMed/NCBI
|
38
|
Khasigov PZ, Podobed OV, Gracheva TS,
Salbiev KD, Grachev SV and Berezov TT: Role of matrix
metalloproteinases and their inhibitors in tumor invasion and
metastasis. Biochemistry (Mosc). 68:711–717. 2003. View Article : Google Scholar
|
39
|
Hamsa TP and Kuttan G: Inhibition of
invasion and experimental metastasis of murine melanoma cells by
Ipomoea obscura (L) is mediated through the down-regulation of
inflammatory mediators and matrix-metalloproteinases. J Exp Ther
Oncol. 9:139–151. 2011.
|
40
|
Ordoñez R, Carbajo-Pescador S,
Prieto-Dominguez N, García-Palomo A, González-Gallego J and Mauriz
JL: Inhibition of matrix metalloproteinase-9 and nuclear factor
kappaB contribute to melatonin prevention of motility and
invasiveness in HepG2 liver cancer cells. J Pineal Res. 56:20–30.
2013. View Article : Google Scholar
|
41
|
Yang JS, Lin CW, Hsieh YS, Cheng HL, Lue
KH, Yang SF and Lu KH: Selaginella tamariscina (Beauv) possesses
antimetastatic effects on human osteosarcoma cells by decreasing
MMP-2 and MMP-9 secretions via p38 and Akt signaling pathways. Food
Chem Toxicol. 59:801–807. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Khadjavi A, Valente E, Giribaldi G and
Prato M: Involvement of p38 MAPK in haemozoin-dependent MMP-9
enhancement in human monocytes. Cell Biochem Funct. 32:5–15. 2014.
View Article : Google Scholar
|