1
|
Huang Q, Zhang QB, Dong J, et al: Glioma
stem cells are more aggressive in recurrent tumors with malignant
progression than in the primary tumor, and both can be maintained
long-term in vitro. BMC Cancer. 8:3042008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kim JK, Jin X, Sohn YW, Jin X, Jeon HY,
Kim EJ, Ham SW, Jeon HM, Chang SY, Oh SY, et al: Tumoral RANKL
activates astrocytes that promote glioma cell invasion through
cytokine signaling. Cancer Lett. 353:194–200. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu B, Gao YQ, Wang XM, Wang YC and Fu LQ:
Germacrone inhibits the proliferation of glioma cells by promoting
apoptosis and inducing cell cycle arrest. Mol Med Rep.
10:1046–1050. 2014.PubMed/NCBI
|
4
|
Janinis J, Efstathiou E, Panopoulos C, et
al: Phase II study of temozolomide in patients with relapsing high
grade glioma and poor performance status. Med Oncol. 17:106–110.
2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nakano I: Therapeutic potential of
targeting glucose metabolism in glioma stem cells. Expert Opin Ther
Targets. 18:1233–1236. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huber RM, Flentje M, Schmidt M, Pöllinger
B, Gosse H, Willner J and Ulm K; Bronchial Carcinoma Therapy Group:
Simultaneous chemoradiotherapy compared with radiotherapy alone
after induction chemotherapy in inoperable stage IIIA or IIIB
non-small-cell lung cancer: study CTRT99/97 by the Bronchial
Carcinoma Therapy Group. J Clin Oncol. 2006 Sep 20;24(27):
4397–404. View Article : Google Scholar : PubMed/NCBI
|
7
|
Godlewski J, Nowicki MO, Bronisz A,
Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca
EA and Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal
factor by microRNA-128 inhibits glioma proliferation and
self-renewal. Cancer Res. 68:9125–9130. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Silber J, Lim DA, Petritsch C, Persson AI,
Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello
JF, et al: miR-124 and miR-137 inhibit proliferation of
glioblastoma multiforme cells and induce differentiation of brain
tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang TQ, Lu XJ, Wu TF, Ding DD, Zhao ZH,
Chen GL, Xie XS, Li B, Wei YX, Guo LC, et al: MicroRNA-16 inhibits
glioma cell growth and invasion through suppression of BCL2 and the
nuclear factor-κB1/MMP9 signaling pathway. Cancer Sci. 105:265–271.
2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li X, Ling N, Bai Y, Dong W, Hui GZ, Liu
D, Zhao J and Hu J: MiR-16-1 plays a role in reducing migration and
invasion of glioma cells. Anat Rec (Hoboken). 296:427–432. 2013.
View Article : Google Scholar
|
12
|
Gao H, Zhang S, Cao S, Yang Z, Pang Z and
Jiang X: Angiopep-2 and activatable cell-penetrating peptide
dual-functionalized nanoparticles for systemic glioma-targeting
delivery. Mol Pharm. 11:2755–2763. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nakano A, Tani E, Miyazaki K, Yamamoto Y
and Furuyama J: Matrix metalloproteinases and tissue inhibitors of
metalloproteinases in human gliomas. J Neurosurg. 83:298–307. 1995.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Rao JS, Steck PA, Tofilon P, Boyd D,
Ali-Osman F, Stetler-Stevenson WG, Liotta LA and Sawaya R: Role of
plasminogen activator and of 92-KDa type IV collagenase in
glioblastoma invasion using an in vitro matrigel model. J
Neurooncol. 18:129–138. 1994. View Article : Google Scholar
|
15
|
Yan W, Zhang W, Sun L, et al:
Identification of MMP-9 specific microRNA expression profile as
potential targets of anti-invasion therapy in glioblastoma
multiforme. Brain Res. 1411:108–115. 2011.PubMed/NCBI
|
16
|
Wong ET, Alsop D, Lee D, et al:
Cerebrospinal fluid matrix metalloproteinase-9 increases during
treatment of recurrent malignant gliomas. Cerebrospinal Fluid Res.
5:12008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ramaswamy P, Aditi Devi N, Hurmath Fathima
K and Dalavaikodihalli Nanjaiah N: Activation of NMDA receptor of
glutamate influences MMP-2 activity and proliferation of glioma
cells. Neurol Sci. 35:823–829. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zheng YQ, Wei W, Zhu L and Liu JX: Effects
and mechanisms of Paeoniflorin, a bioactive glucoside from paeony
root, on adjuvant arthritis in rats. Inflamm Res. 56:182–188. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang H, Zhou H, Wang CX, Li YS, Xie HY,
Luo JD and Zhou Y: Paeoniflorin inhibits growth of human colorectal
carcinoma HT 29 cells in vitro and in vivo. Food Chem Toxicol.
50:1560–1567. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang L and Zhang S: Modulating Bcl-2
family proteins and caspase-3 in induction of apoptosis by
paeoniflorin in human cervical cancer cells. Phytother Res.
25:1551–1557. 2011. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Jiang Z, Chen W, Yan X, Bi L, Guo S and
Zhan Z: Paeoniflorin protects cells from GalN/TNF-α-induced
apoptosis via ER stress and mitochondria-dependent pathways in
human L02 hepatocytes. Acta Biochim Biophys Sin (Shanghai).
46:357–367. 2014. View Article : Google Scholar
|
22
|
Gorlia T, Stupp R, Brandes AA, et al: New
prognostic factors and calculators for outcome prediction in
patients with recurrent glioblastoma: a pooled analysis of EORTC
Brain Tumour Group phase I and II clinical trials. Eur J Cancer.
48:1176–1184. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou GS, Song LJ and Yang B:
Isoliquiritigenin inhibits proliferation and induces apoptosis of
U87 human glioma cells in vitro. Mol Med Rep. 7:531–536. 2013.
|
24
|
No authors listed. Retraction:
Pharmacokinetic interaction of paeoniflorin and sinomenine:
Pharmacokinetic parameters and tissue distribution characteristics
in rats and protein binding ability in vitro. J Pharmacol Sci.
104:2832007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu J, Zhu X, Qi X, Che J and Cao B:
Paeoniflorin protects human EA. hy926 endothelial cells against
gamma-radiation induced oxidative injury by activating the
NF-E2-related factor 2/heme oxygenase-1 pathway. Toxicol Lett.
218:224–234. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fang S, Zhu W, Zhang Y, Shu Y and Liu P:
Paeoniflorin modulates multidrug resistance of a human gastric
cancer cell line via the inhibition of NF-κB activation. Mol Med
Rep. 5:351–356. 2012.
|
27
|
Lu JT, He W, Song SS and Wei W:
Paeoniflorin inhibited the tumor invasion and metastasis in human
hepatocellular carcinoma cells. Bratisl Lek Listy. 115:427–433.
2014.PubMed/NCBI
|
28
|
Lee YD, Cui MN, Yoon HH, Kim HY, Oh IH and
Lee JH: Down-modulation of Bis reduces the invasive ability of
glioma cells induced by TPA, through NF-κB mediated activation of
MMP-9. BMB Rep. 47:262–267. 2014. View Article : Google Scholar :
|
29
|
Rao JS, Yamamoto M, Mohaman S, Gokaslan
ZL, Fuller GN, Stetler-Stevenson WG, Rao VH, Liotta LA, Nicolson GL
and Sawaya RE: Expression and localization of 92 kDa type IV
collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp
Metastasis. 14:12–18. 1996. View Article : Google Scholar : PubMed/NCBI
|
30
|
Banno K, Iida M, Yanokura M, et al:
MicroRNA in cervical cancer: OncomiRs and tumor suppressor miRs in
diagnosis and treatment. ScientificWorldJournal. 2014:1780752014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar
|
32
|
Wang F, Sun JY, Zhu YH, Liu NT, Wu YF and
Yu F: MicroRNA-181 inhibits glioma cell proliferation by targeting
cyclin B1. Mol Med Rep. 10:2160–2164. 2014.PubMed/NCBI
|