Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty
- Authors:
- Qingwei Ruan
- Grazia D'Onofrio
- Daniele Sancarlo
- Antonio Greco
- Zhuowei Yu
-
Affiliations: Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China, Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS ‘Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy - Published online on: August 9, 2016 https://doi.org/10.3892/mmr.2016.5618
- Pages: 3184-3198
-
Copyright: © Ruan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kelaiditi E, Cesari M, Canevelli M, van Kan GA, Ousset PJ, Gillette-Guyonnet S, Ritz P, Duveau F, Soto ME, Provencher V, et al: Cognitive frailty: Rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging. 17:726–734. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ruan Q, Yu Z, Chen M, Bao Z, Li J and He W: Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res Rev. 20:1–10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Buerger K, Frisoni G, Uspenskaya O, Ewers M, Zetterberg H, Geroldi C, Binetti G, Johannsen P, Rossini PM, Wahlund LO, et al: Validation of Alzheimer's disease CSF and plasma biological markers: The multicentre reliability study of the pilot European Alzheimer's disease neuroimaging initiative (E-ADNI). Exp Gerontol. 44:579–585. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Hong S, O'Malley T, Sperling RA, Walsh DM and Selkoe DJ: New ELISAs with high specificity for soluble oligomers of amyloid β-protein detect natural Aβ oligomers in human brain but not CSF. Alzheimers Dement. 9:99–112. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dixon-Woods M, Agarwal S, Jones D, Young B and Sutton A: Synthesising qualitative and quantitative evidence: A review of possible methods. J Health Serv Res Policy. 10:45–53. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hannes K and Macaitis K: A move to more systematic and transparent approaches in qualitative evidence synthesis: Update on a review of published papers. Qual Res. 12:402–442. 2012. View Article : Google Scholar | |
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7:263–269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, et al: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7:270–279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Barnett-Page E and Thomas J: Methods for the synthesis of qualitative research: A critical review. BMC Med Res Methodol. 9:592009. View Article : Google Scholar : PubMed/NCBI | |
Grant MJ and Booth A: A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info Libr J. 26:91–108. 2009. View Article : Google Scholar : PubMed/NCBI | |
Noel-Storr AH, McCleery JM, Richard E, Ritchie CW, Flicker L, Cullum SJ, Davis D, Quinn TJ, Hyde C, Rutjes AW, et al: Reporting standards for studies of diagnostic test accuracy in dementia: The STARDdem Initiative. Neurology. 83:364–373. 2014. View Article : Google Scholar : PubMed/NCBI | |
Padovani A, Borroni B, Colciaghi F, Pettenati C, Cottini E, Agosti C, Lenzi GL, Caltagirone C, Trabucchi M, Cattabeni F and Di Luca M: Abnormalities in the pattern of platelet amyloid precursor protein forms in patients with mild cognitive impairment and Alzheimer disease. Arch Neurol. 59:71–75. 2002. View Article : Google Scholar : PubMed/NCBI | |
Borroni B, Colciaghi F, Caltagirone C, Rozzini L, Broglio L, Cattabeni F, Di Luca M and Padovani A: Platelet amyloid precursor protein abnormalities in mild cognitive impairment predict conversion to dementia of Alzheimer type: A 2-year follow-up study. Arch Neurol. 60:1740–1744. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baskin F, Rosenberg RN, Iyer L, Hynan L and Cullum CM: Platelet APP isoform ratios correlate with declining cognition in AD. Neurology. 54:1907–1909. 2000. View Article : Google Scholar : PubMed/NCBI | |
Prodan CI, Ross ED, Stoner JA, Cowan LD, Vincent AS and Dale GL: Coated-platelet levels and progression from mild cognitive impairment to Alzheimer disease. Neurology. 76:247–252. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lewczuk P, Kornhuber J, Vanmechelen E, Peters O, Heuser I, Maier W, Jessen F, Bürger K, Hampel H, Frölich L, et al: Amyloid beta peptides in plasma in early diagnosis of Alzheimer's disease: A multicenter study with multiplexing. Exp Neurol. 223:366–370. 2010. View Article : Google Scholar | |
Gurol ME, Irizarry MC, Smith EE, Raju S, Diaz-Arrastia R, Bottiglieri T, Rosand J, Growdon JH and Greenberg SM: Plasma beta-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy. Neurology. 66:23–29. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lopez OL, Kuller LH, Mehta PD, Becker JT, Gach HM, Sweet RA, Chang YF, Tracy R and DeKosky ST: Plasma amyloid levels and the risk of AD in normal subjects in the cardiovascular health study. Neurology. 70:1664–1671. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, et al: Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 28:595–599. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J and Hansson O: Plasma tau levels in Alzheimer's disease. Alzheimers Res Ther. 5:92013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, Seyfried NT, Hu WT, Liu Z, Wang JZ, et al: Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nat Med. 20:1254–1262. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, et al: Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, Smith N, Thambisetty M, Kloszewska I, Mecocci P, et al: Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiol Aging. 35:271–278. 2014. View Article : Google Scholar | |
Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH and Wurtman RJ: Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA. 89:1671–1675. 1992. View Article : Google Scholar : PubMed/NCBI | |
Marksteiner J, Imarhiagbe D, Defrancesco M, Deisenhammer EA, Kemmler G and Humpel C: Analysis of 27 vascular-related proteins reveals that NT-proBNP is a potential biomarker for Alzheimer's disease and mild cognitive impairment: A pilot-study. Exp Gerontol. 50:114–121. 2014. View Article : Google Scholar | |
Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R, Sattlecker M, et al: Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement. 10:799–807.e2. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lane R, Feldman HH, Meyer J, He Y, Ferris SH, Nordberg A, Darreh-Shori T, Soininen H, Pirttilä T, Farlow MR, et al: Synergistic effect of apolipoprotein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer's disease. Pharmacogenet Genomics. 18:289–298. 2008. View Article : Google Scholar : PubMed/NCBI | |
Soares HD, Potter WZ, Pickering E, Kuhn M, Immermann FW, Shera DM, Ferm M, Dean RA, Simon AJ, Swenson F, et al: Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol. 69:1310–1317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sattlecker M, Kiddle SJ, Newhouse S, Proitsi P, Nelson S, Williams S, Johnston C, Killick R, Simmons A, Westman E, et al: Alzheimer's disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement. 10:724–734. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jessen F, Lewczuk P, Gür O, Block W, Ende G, Frölich L, Hammen T, Arlt S, Kornhuber J, Kucinski T, et al: Association of N-acetylaspartate and cerebrospinal fluid Aβ42 in dementia. J Alzheimers Dis. 27:393–399. 2011. | |
Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun MA, Peskind ER, Li G, Galasko DR, et al: YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer's disease. Biol Psychiatry. 68:903–912. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schipper HM, Chertkow H, Mehindate K, Frankel D, Melmed C and Bergman H: Evaluation of heme oxygenase-1 as a systemic biological marker of sporadic AD. Neurology. 54:1297–1304. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mangialasche F, Westman E, Kivipelto M, Muehlboeck JS, Cecchetti R, Baglioni M, Tarducci R, Gobbi G, Floridi P, Soininen H, et al: Classification and prediction of clinical diagnosis of Alzheimer's disease based on MRI and plasma measures of α-/γ-tocotrienols and γ-tocopherol. J Intern Med. 273:602–621. 2013. View Article : Google Scholar : PubMed/NCBI | |
Babiloni C, Bosco P, Ghidoni R, Del Percio C, Squitti R, Binetti G, Benussi L, Ferri R, Frisoni G, Lanuzza B, et al: Homocysteine and electroencephalographic rhythms in Alzheimer disease: A multicentric study. Neuroscience. 145:942–954. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U and Mecocci P: Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging. 24:915–919. 2003. View Article : Google Scholar : PubMed/NCBI | |
Squitti R, Bressi F, Pasqualetti P, Bonomini C, Ghidoni R, Binetti G, Cassetta E, Moffa F, Ventriglia M, Vernieri F and Rossini PM: Longitudinal prognostic value of serum 'free' copper in patients with Alzheimer disease. Neurology. 72:50–55. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pavlopoulos E, Jones S, Kosmidis S, Close M, Kim C, Kovalerchik O, Small SA and Kandel ER: Molecular mechanism for age-related memory loss: The histone-binding protein RbAp48. Sci Transl Med. 5:200ra1152013. View Article : Google Scholar : PubMed/NCBI | |
Hertz L, Chen Y and Waagepetersen HS: Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem. 134:7–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nettiksimmons J, Ayonayon H, Harris T, Phillips C, Rosano C, Satterfield S and Yaffe K; Health ABC Study: Development and validation of risk index for cognitive decline using blood-derived markers. Neurology. 84:696–702. 2015. View Article : Google Scholar : PubMed/NCBI | |
Apostolova LG, Hwang KS, Avila D, Elashoff D, Kohannim O, Teng E, Sokolow S, Jack CR, Jagust WJ, Shaw L, et al: Brain amyloidosis ascertainment from cognitive, imaging, and peripheral blood protein measures. Neurology. 84:729–737. 2015. View Article : Google Scholar : PubMed/NCBI | |
Smits LL, Pijnenburg YA, van der Vlies AE, Koedam EL, Bouwman FH, Reuling IE, Scheltens P and van der Flier WM: Early onset APOE E4-negative Alzheimer's disease patients show faster cognitive decline on non-memory domains. Eur Neuropsychopharmacol. 25:1010–1017. 2015. View Article : Google Scholar : PubMed/NCBI | |
Michaelson DM: APOE ε4: The most prevalent yet understudied risk factor for Alzheimer's disease. Alzheimers Dement. 10:861–868. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lautner R, Palmqvist S, Mattsson N, Andreasson U, Wallin A, Pålsson E, Jakobsson J, Herukka SK, Owenius R, Olsson B, et al: Apolipoprotein E genotype and the diagnostic accuracy of cerebrospinal fluid biomarkers for Alzheimer disease. JAMA Psychiatry. 71:1183–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Helbecque N, Berr C, Cottel D, Fromentin-David I, Sazdovitch V, Ricolfi F, Ducimetière P, Di Menza C and Amouyel P: VLDL receptor polymorphism, cognitive impairment, and dementia. Neurology. 56:1183–1188. 2001. View Article : Google Scholar : PubMed/NCBI | |
Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A and Kurz A: Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol. 59:1729–1734. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wolfsgruber S, Jessen F, Koppara A, Kleineidam L, Schmidtke K, Frölich L, Kurz A, Schulz S, Hampel H, Heuser I, et al: Subjective cognitive decline is related to CSF biomarkers of AD in patients with MCI. Neurology. 84:1261–1268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ewers M, Mattsson N, Minthon L, Molinuevo JL, Antonell A, Popp J, Jessen F, Herukka SK, Soininen H, Maetzler W, et al: CSF biomarkers for the differential diagnosis of Alzheimer's disease: A large-scale international multicenter study. Alzheimers Dement. 11:1306–1315. 2015. View Article : Google Scholar : PubMed/NCBI | |
Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA, Trojanowski JQ, Shaw LM and Jagust WJ; Alzheimer's Disease Neuroimaging Initiative: Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann Neurol. 74:826–836. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nettiksimmons J, Harvey D, Brewer J, Carmichael O, DeCarli C, Jack CR Jr, Petersen R, Shaw LM, Trojanowski JQ, Weiner MW, et al: Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline. Neurobiol Aging. 31:1419–1428. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okonkwo OC, Alosco ML, Griffith HR, Mielke MM, Shaw LM, Trojanowski JQ and Tremont G; Alzheimer's Disease Neuroimaging Initiative: Cerebrospinal fluid abnormalities and rate of decline in everyday function across the dementia spectrum: Normal aging, mild cognitive impairment and Alzheimer disease. Arch Neurol. 67:688–696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, et al: CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 302:385–393. 2009. View Article : Google Scholar : PubMed/NCBI | |
Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, Petersen RC, Shaw LM, Trojanowski JQ, Jack CR Jr, et al: Comparing predictors of conversion and decline in mild cognitive impairment. Neurology. 75:230–238. 2010. View Article : Google Scholar : PubMed/NCBI | |
Van Rossum IA, Vos SJ, Burns L, Knol DL, Scheltens P, Soininen H, Wahlund LO, Hampel H, Tsolaki M, Minthon L, et al: Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology. 79:1809–1816. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC and Jack CR Jr; Alzheimer's Disease Neuroimaging Initiative: MRI and CSF biomarkers in normal, MCI, and AD subjects: Predicting future clinical change. Neurology. 73:294–301. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eckerström C, Olsson E, Bjerke M, Malmgren H, Edman A, Wallin A and Nordlund A: A combination of neuropsychological, neuroimaging, and cerebrospinal fluid markers predicts conversion from mild cognitive impairment to dementia. J Alzheimers Dis. 36:421–431. 2013.PubMed/NCBI | |
Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE and Doraiswamy PM; Alzheimer's Disease Neuroimaging Initiative: Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinalfluid, MR imaging, and PET biomarkers. Radiology. 266:583–591. 2013. View Article : Google Scholar : | |
Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, Feldman HH, Bokde AL, Alexander GE, Scheltens P, et al: Prediction of conversion from mild cognitive impairment to Alzheimer's disese dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging. 33:1203–1214. 2012. View Article : Google Scholar | |
Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, Bernstein MA, Aisen PS, Weiner M, Petersen RC, et al: Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology. 75:143–151. 2010. View Article : Google Scholar : PubMed/NCBI | |
Blennow K, Wallin A, Fredman P, Karlsson I, Gottfries CG and Svennerholm L: Blood-brain barrier disturbance in patients with Alzheimer's disease is related to vascular factors. Acta Neurol Scand. 81:323–326. 1990. View Article : Google Scholar : PubMed/NCBI | |
Skoog I, Wallin A, Fredman P, Hesse C, Aevarsson O, Karlsson I, Gottfries CG and Blennow K: A population study on blood-brain barrier function in 85-year-olds: Relation to Alzheimer's disease and vascular dementia. Neurology. 50:966–971. 1998. View Article : Google Scholar : PubMed/NCBI | |
Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B and Zlokovic BV: Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol. 70:1198–1200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto Y, Yanase D, Noguchi-Shinohara M, Ono K, Yoshita M and Yamada M: Blood-brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-beta protein transport across the blood-brain barrier in Alzheimer's disease. Dement Geriatr Cogn Disord. 23:241–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, et al: Blood-brain barrier breakdown in the aging human hippo-campus. Neuron. 85:296–302. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zetterberg H, Andreasson U, Hansson O, Wu G, Sankaranarayanan S, Andersson ME, Buchhave P, Londos E, Umek RM, Minthon L, et al: Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol. 65:1102–1107. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ewers M, Zhong Z, Bürger K, Wallin A, Blennow K, Teipel SJ, Shen Y and Hampel H: Increased CSF-BACE 1 activity is associated with ApoE-epsilon 4 genotype in subjects with mild cognitive impairment and Alzheimer's disease. Brain. 131:1252–1258. 2008. View Article : Google Scholar : PubMed/NCBI | |
Olsson A, Höglund K, Sjögren M, Andreasen N, Minthon L, Lannfelt L, Buerger K, Möller HJ, Hampel H, Davidsson P and Blennow K: Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol. 183:74–80. 2003. View Article : Google Scholar : PubMed/NCBI | |
Perneczky R, Tsolakidou A, Arnold A, Diehl-Schmid J, Grimmer T, Förstl H, Kurz A and Alexopoulos P: CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology. 77:35–38. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lewczuk P, Popp J, Lelental N, Kölsch H, Maier W, Kornhuber J and Jessen F: Cerebrospinal fluid soluble amyloid-β protein precursor as a potential novel biomarkers of Alzheimer's disease. J Alzheimers Dis. 28:119–125. 2012. | |
Hansson O, Zetterberg H, Buchhave P, Andreasson U, Londos E, Minthon L and Blennow K: Prediction of Alzheimer's disease using the CSF Abeta42/Abeta40 ratio in patients with mild cognitive impairment. Dement Geriatr Cogn Disord. 23:316–320. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hölttä M, Hansson O, Andreasson U, Hertze J, Minthon L, Nägga K, Andreasen N, Zetterberg H and Blennow K: Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer's disease. PLoS One. 8:e663812013. View Article : Google Scholar | |
Herskovits AZ, Locascio JJ, Peskind ER, Li G and Hyman BT: A Luminex assay detects amyloid β oligomers in Alzheimer's disease cerebrospinal fluid. PLoS One. 8:e678982013. View Article : Google Scholar | |
Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, Bennett DA and Ashe KH: Brain amyloid-β oligomers in ageing and Alzheimer's disease. Brain. 136:1383–1398. 2013. View Article : Google Scholar | |
Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T, Maxwell JW, Hatcher NG, Haugabook SJ, Wu G, et al: A sensitive aβ oligomer assay discriminates Alzheimer's and aged control cerebrospinal fluid. J Neurosci. 34:2884–2897. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang T, O'Malley TT, Kanmert D, Jerecic J, Zieske LR, Zetterberg H, Hyman BT, Walsh DM and Selkoe DJ: A highly sensitive novel immunoassay specifically detects low levels of soluble Aβ oligomers in human cerebrospinal fluid. Alzheimers Res Ther. 7:142015. View Article : Google Scholar | |
Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Hafermann H, Klafki H, Gerwert K and Wiltfang J: Amyloid-β-secondary structure distribution in cerebrospinal fluid and blood measured by an immune-infrared-sensor: A biomarker candidate for Alzheimer's disease. Anal Chem. 88:2755–2762. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Öhrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O, et al: Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer's disease. Alzheimers Dement. 11:1180–1190. 2015. View Article : Google Scholar | |
Portelius E, Zetterberg H, Skillbäck T, Törnqvist U, Andreasson U, Trojanowski JQ, Weiner MW, Shaw LM, Mattsson N and Blennow K; Alzheimer's Disease Neuroimaging Initiative: Cerebrospinal fluid neurogranin: Relation to cognition and neurodegeneration in Alzheimer's disease. Brain. 138:3373–3385. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kester MI, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P, van der Flier WM, Morris JC, Holtzman DM and Fagan AM: Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol. 72:1275–1280. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sjögren M, Rosengren L, Minthon L, Davidsson P, Blennow K and Wallin A: Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology. 54:1960–1964. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sjögren M, Davidsson P, Gottfries J, Vanderstichele H, Edman A, Vanmechelen E, Wallin A and Blennow K: The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor proteincorrelate in Alzheimer's disease, reflecting a common pathophysiological process. Dement Geriatr Cogn Disord. 12:257–264. 2001. View Article : Google Scholar | |
de la Monte SM, Ghanbari K, Frey WH, Beheshti I, Averback P, Hauser SL, Ghanbari HA and Wands JR: Characterization of the AD7C-NTP cDNA expression in Alzheimer's disease and measurement of a 41-kDprotein in cerebrospinal fluid. J Clin Invest. 100:3093–3104. 1997. View Article : Google Scholar | |
Tarawneh R, D'Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, et al: Visinin-like protein-1: Diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol. 70:274–285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tarawneh R, Lee JM, Ladenson JH, Morris JC and Holtzman DM: CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology. 78:709–719. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tarawneh R, Head D, Allison S, Buckles V, Fagan AM, Ladenson JH, Morris JC and Holtzman DM: Cerebrospinal fluid markers of neurodegeneration and rates of brain atrophy in early Alzheimer disease. JAMA Neurol. 72:656–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sutphen CL, Jasielec MS, Shah AR, Macy EM, Xiong C, Vlassenko AG, Benzinger TL, Stoops EE, Vanderstichele HM, Brix B, et al: Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol. 72:1029–1042. 2015. View Article : Google Scholar : PubMed/NCBI | |
Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, Hampel H, Kastler J and Senn H: Metabolite profiling of Alzheimer's disease cerebrospinal fluid. PLoS One. 7:e315012012. View Article : Google Scholar : PubMed/NCBI | |
Liguori C, Stefani A, Sancesario G, Sancesario GM, Marciani MG and Pierantozzi M: CSF lactate levels, τ proteins, cognitive decline: A dynamic relationship in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 86:655–659. 2015. View Article : Google Scholar | |
Vafadar-Isfahani B, Ball G, Coveney C, Lemetre C, Boocock D, Minthon L, Hansson O, Miles AK, Janciauskiene SM, Warden D, et al: Identification of SPARC-like 1 protein as part of a biomarker panel for Alzheimer's disease in cerebrospinal fluid. J Alzheimers Dis. 28:625–636. 2012. | |
Wildsmith KR, Schauer SP, Smith AM, Arnott D, Zhu Y, Haznedar J, Kaur S, Mathews WR and Honigberg LA: Identification of longitudinally dynamic biomarkers in Alzheimer's disease cerebrospinal fluid by targeted proteomics. Mol Neurodegener. 9:222014. View Article : Google Scholar : PubMed/NCBI | |
Korff A, Liu C, Ginghina C, Shi M and Zhang J; Alzheimer's Disease Neuroimaging Initiative: α-Synuclein in cerebrospinal fluid of Alzheimer's disease and mild cognitive impairment. J Alzheimers Dis. 36:679–688. 2013. | |
Olsson B, Hertze J, Ohlsson M, Nägga K, Höglund K, Basun H, Annas P, Lannfelt L, Andreasen N, Minthon L, et al: Cerebrospinal fluid levels of heart fatty acid binding protein are elevated prodromally in Alzheimer's disease and vascular dementia. J Alzheimers Dis. 34:673–679. 2013. | |
Yamagishi S, Inagaki Y, Takeuchi M and Sasaki N: Is pigment epithelium-derived factor level in cerebrospinal fluid a promising biomarker for early diagnosis of Alzheimer's disease? Med Hypotheses. 63:115–117. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lovell MA, Lynn BC, Xiong S, Quinn JF, Kaye J and Markesbery WR: An aberrant protein complex in CSF as a biomarker of Alzheimer disease. Neurology. 70:2212–2218. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brys M, Pirraglia E, Rich K, Rolstad S, Mosconi L, Switalski R, Glodzik-Sobanska L, De Santi S, Zinkowski R, Mehta P, et al: Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging. 30:682–690. 2009. View Article : Google Scholar : | |
Ayton S, Faux NG and Bush AI; Alzheimer's Disease Neuroimaging Initiative: Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nat Commun. 6:67602015. View Article : Google Scholar : PubMed/NCBI | |
Ghanbari H, Ghanbari K, Beheshti I, Munzar M, Vasauskas A and Averback P: Biochemical assay for AD7C-NTP in urine as an Alzheimer's disease marker. J Clin Lab Anal. 12:285–288. 1998. View Article : Google Scholar : PubMed/NCBI | |
Goodman I, Golden G, Flitman S, Xie K, McConville M, Levy S, Zimmerman E, Lebedeva Z, Richter R, Minagar A and Averback P: A multi-center blinded prospective study of urine neural thread protein measurements in patients with suspected Alzheimer's disease. J Am Med Dir Assoc. 8:21–30. 2007. View Article : Google Scholar : PubMed/NCBI | |
de la Monte SM and Wands JR: The AD7c-ntp neuronal thread protein biomarker for detecting Alzheimer's disease. Front Biosci. 7:d989–d996. 2002.PubMed/NCBI | |
Ma L, Chen J, Wang R, Han Y, Zhang J, Dong W, Zhang X, Wu Y and Zhao Z: The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J Clin Neurosci. 22:649–652. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zengi O, Karakas A, Ergun U, Senes M, Inan L and Yucel D: Urinary 8-hydroxy-2′-deoxyguanosine level and plasma paraoxonase 1 activity withAlzheimer's disease. Clin Chem Lab Med. 50:529–534. 2011.PubMed/NCBI | |
Kim KM, Jung BH, Paeng KJ, Kim I and Chung BC: Increased urinary F(2) isoprostanes levels in the patients with Alzheimer's disease. Brain Res Bull. 64:47–51. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yoshida M, Higashi K, Kuni K, Mizoi M, Saiki R, Nakamura M, Waragai M, Uemura K, Toida T, Kashiwagi K and Igarashi K: Distinguishing mild cognitive impairment from Alzheimer's disease with acrolein metabolites and creatinine in urine. Clin Chim Acta. 441:115–121. 2015. View Article : Google Scholar | |
Rabassa M, Cherubini A, Zamora-Ros R, Urpi-Sarda M, Bandinelli S, Ferrucci L and Andres-Lacueva C: Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: The invecchiare in chianti study. J Am Geriatr Soc. 63:938–946. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cook CN, Murray ME and Petrucelli L: Understanding biomarkers of neurodegeneration: Novel approaches to detecting tau pathology. Nat Med. 21:219–220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kfoury N, Holmes BB, Jiang H, Holtzman DM and Diamond MI: Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem. 287:19440–19451. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM and Diamond MI: Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA. 111:E4376–E4385. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S, Maloney SE, Wozniak DF, Diamond MI and Holtzman DM: Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 80:402–414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kong D, Giovanello KS, Wang Y, Lin W, Lee E, Fan Y, Murali Doraiswamy P and Zhu H: Predicting Alzheimer's disease using combined imaging-whole genome SNP data. J Alzheimers Dis. 46:695–702. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Bresell A, Rantalainen M, Höglund K, Lebouvier T and Salter H; Alzheimer Disease Neuroimaging Initiative: An integrated bioinformatics approach for identifying genetic markers that predict cerebrospinal fluid biomarker p-tau181/Aβ1-42 ratio in ApoE4-negative mild cognitive impairment patients. J Alzheimers Dis. 45:1061–1076. 2015. | |
Castro-Chavira SA, Fernandez T, Nicolini H, Diaz-Cintra S and Prado-Alcala RA: Genetic markers in biological fluids for aging-related major neurocognitive disorder. Curr Alzheimer Res. 12:200–209. 2015. View Article : Google Scholar : PubMed/NCBI | |
Femminella GD, Ferrara N and Rengo G: The emerging role of microRNAs in Alzheimer's disease. Front Physiol. 6:402015. View Article : Google Scholar : PubMed/NCBI | |
Namioka N, Hanyu H, Hirose D, Hatanaka H, Sato T and Shimizu S: Oxidative stress and inflammation are associated with physical frailty in patients with Alzheimer's disease. Geriatr Gerontol Int. Jun 14–2016.Epub ahead of print. View Article : Google Scholar | |
Panza F, Solfrizzi V, Barulli MR, Santamato A, Seripa D, Pilotto A and Logroscino G: Cognitive Frailty: A systematic review of epidemiological and neurobiological evidence of an age-related clinical condition. Rejuvenation Res. 18:389–412. 2015. View Article : Google Scholar : PubMed/NCBI |