1
|
Maciotta S, Meregalli M and Torrente Y:
The involvement of microRNAs in neurodegenerative diseases. Front
Cell Neurosci. 7:2652013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Shtilbans A and Henchcliffe C: Biomarkers
in Parkinson's disease: An update. Curr Opin Neurol. 25:460–465.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mouradian MM: MicroRNAs in Parkinson's
disease. Neurobiol Dis. 46:279–284. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Harraz MM, Dawson TM and Dawson VL:
MicroRNAs in Parkinson's disease. J Chem Neuroanat. 42:127–130.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Filatova EV, Alieva AK, Shadrina MI and
Slominsky PA: MicroRNAs: Possible role in pathogenesis of
Parkinson's disease. Biochemistry (Mosc). 77:813–819. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Junn E and Mouradian MM: MicroRNAs in
neurodegenerative diseases and their therapeutic potential.
Pharmacol Ther. 133:142–150. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang C, Ji B, Cheng B, Chen J and Bai B:
Neuroprotection of microRNA in neurological disorders (Review).
Biomed Rep. 2:611–619. 2014.PubMed/NCBI
|
8
|
Moher D, Liberati A, Tetzlaff J and Altman
DG: PRISMA Group: Preferred reporting items for systematic reviews
and meta-analyses: The PRISMA statement. Int J Surg. 8:336–341.
2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cardo LF, Coto E, de Mena L, Ribacoba R,
Moris G, Menéndez M and Alvarez V: Profile of microRNAs in the
plasma of Parkinson's disease patients and healthy controls. J
Neurol. 260:1420–1422. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Botta-Orfila T, Morató X, Compta Y, Lozano
JJ, Falgàs N, Valldeoriola F, Pont-Sunyer C, Vilas D, Mengual L,
Fernández M, et al: Identification of blood serum micro-RNAs
associated with idiopathic and LRRK2 Parkinson's disease. J
Neurosci Res. 92:1071–1077. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Vallelunga A, Ragusa M, Di Mauro S,
Iannitti T, Pilleri M, Biundo R, Weis L, Di Pietro C, De Iuliis A,
Nicoletti A, et al: Identification of circulating microRNAs for the
differential diagnosis of Parkinson's disease and multiple system
atrophy. Front Cell Neurosci. 8:1562014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Serafin A, Foco L, Zanigni S, Blankenburg
H, Picard A, Zanon A, Giannini G, Pichler I, Facheris MF, Cortelli
P, et al: Overexpression of blood microRNAs 103a, 30b, and 29a in
L-dopa-treated patients with PD. Neurology. 84:645–653. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Margis R and Rieder CR: Identification of
blood microRNAs associated to Parkinsonĭs disease. J Biotechnol.
152:96–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martins M, Rosa A, Guedes LC, Fonseca BV,
Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, et
al: Convergence of miRNA expression profiling, α-synuclein
interacton and GWAS in Parkinson's disease. PLoS One. 6:e254432011.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Khoo SK, Petillo D, Kang UJ, Resau JH,
Berryhill B, Linder J, Forsgren L, Neuman LA and Tan AC:
Plasma-based circulating microRNA biomarkers for Parkinson's
disease. J Parkinsons Dis. 2:321–331. 2012.PubMed/NCBI
|
16
|
Alieva AK, Filatova EV, Karabanov AV,
Illarioshkin SN, Limborska SA, Shadrina MI and Slominsky PA: miRNA
expression is highly sensitive to a drug therapy in Parkinson's
disease. Parkinsonism Relat Disord. 21:72–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Soreq L, Salomonis N, Bronstein M,
Greenberg DS, Israel Z, Bergman H and Soreq H: Small RNA
sequencing-microarray analyses in Parkinson leukocytes reveal deep
brain stimulation-induced and splicing changes that classify brain
region transcriptomes. Front Mol Neurosci. 6:102013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sidransky E, Nalls MA, Aasly JO,
Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J,
Brice A, et al: Multicenter analysis of glucocerebrosidase
mutations in Parkinson's disease. N Engl J Med. 361:1651–1661.
2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hasegawa M, Fujiwara H, Nonaka T,
Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D and
Iwatsubo T: Phosphorylated alpha-synuclein is ubiquitinated in
alpha-synucleinopathy lesions. J Biol Chem. 277:49071–49076. 2002.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Tofaris GK, Razzaq A, Ghetti B, Lilley KS
and Spillantini MG: Ubiquitination of alpha-synuclein in Lewy
bodies is a pathological event not associated with impairment of
proteasome function. J Biol Chem. 278:44405–44411. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Siegel SR, Mackenzie J, Chaplin G,
Jablonski NG and Griffiths L: Circulating microRNAs involved in
multiple sclerosis. Mol Biol Rep. 39:6219–6225. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yamamoto Y, Yoshioka Y, Minoura K,
Takahashi RU, Takeshita F, Taya T, Horii R, Fukuoka Y, Kato T,
Kosaka N and Ochiya T: An integrative genomic analysis revealed the
relevance of microRNA and gene expression for drug-resistance in
human breast cancer cells. Mol Cancer. 10:1352011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang Q, Jia C, Wang P, Xiong M, Cui J, Li
L, Wang W, Wu Q, Chen Y and Zhang T: MicroRNA-505 identified from
patients with essential hypertension impairs endothelial cell
migration and tube formation. Int J Cardiol. 177:925–934. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Fernández-Santiago R, Iranzo A, Gaig C,
Serradell M, Fernández M, Tolosa E, Santamaría J and Ezquerra M:
MicroRNA association with synucleinopathy conversion in rapid eye
movement behavior disorder. Ann Neurol. 77:895–901. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Goedert M: Parkinson's disease and other
alpha-synucleinopathies. Clin Chem Lab Med. 39:308–312. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Murad N, Kokkinaki M, Gunawardena N,
Gunawan MS, Hathout Y, Janczura KJ, Theos AC and Golestaneh N:
miR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in
human retinal pigment epithelium and is downregulated in
age-related macular degeneration. FEBS J. 281:5251–5264. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fortin DL, Troyer MD, Nakamura K, Kubo S,
Anthony MD and Edwards RH: Lipid rafts mediate the synaptic
localization of alpha-synuclein. J Neurosci. 24:6715–6723. 2004.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yavich L, Tanila H, Vepsäläinen S and
Jäkälä P: Role of alpha-synuclein in presynaptic dopamine
recruitment. J Neurosci. 24:11165–11170. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Doxakis E: Post-transcriptional regulation
of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem.
285:12726–12734. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang G, van der Walt JM, Mayhew G, Li YJ,
Züchner S, Scott WK, Martin ER and Vance JM: Variation in the
miRNA-433 binding site of FGF20 confers risk for Parkinson disease
by overexpression of alpha-synuclein. Am J Hum Genet. 82:283–289.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shehadeh L, Mitsi G, Adi N, Bishopric N
and Papapetropoulos S: Expression of Lewy body protein septin 4 in
postmortem brain of Parkinson's disease and control subjects. Mov
Disord. 24:204–210. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hébert SS, Horré K, Nicolaï L,
Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S,
Delacourte A and De Strooper B: Loss of microRNA cluster
miR-29a/b-1 in sporadic Alzheimer's disease correlates with
increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA.
105:6415–6420. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shioya M, Obayashi S, Tabunoki H, Arima K,
Saito Y, Ishida T and Satoh J: Aberrant microRNA expression in the
brains of neurodegenerative diseases: miR-29a decreased in
Alzheimer disease brains targets neurone navigator 3. Neuropathol
Appl Neurobiol. 36:320–330. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Busiguina S, Fernandez AM, Barrios V,
Clark R, Tolbert DL, Berciano J and Torres-Aleman I:
Neurodegeneration is associated to changes in serum insulin-like
growth factors. Neurobiol Dis. 7:657–665. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tuncel D, Tolun F Inanc and Toru I: Serum
insulin-like growth factor-1 and nitric oxide levels in Parkinson's
disease. Mediators Inflamm. 2009:1324642009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Eacker SM, Dawson TM and Dawson VL:
Understanding microRNAs in neurodegeneration. Nat Rev Neurosci.
10:837–841. 2009.PubMed/NCBI
|
37
|
Trajkovski M, Hausser J, Soutschek J, Bhat
B, Akin A, Zavolan M, Heim MH and Stoffel M: MicroRNAs 103 and 107
regulate insulin sensitivity. Nature. 474:649–653. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Aviles-Olmos I, Limousin P, Lees A and
Foltynie T: Parkinson's disease, insulin resistance and novel
agents of neuroprotection. Brain. 136:374–384. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Higashi T, Hayashi H, Ishimoto T, Takeyama
H, Kaida T, Arima K, Taki K, Sakamoto K, Kuroki H, Okabe H, et al:
miR-9-3p plays a tumour-suppressor role by targeting TAZ (WWTR1) in
hepatocellular carcinoma cells. Br J Cancer. 113:252–258. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Fierro-Fernández M, Busnadiego Ó, Sandoval
P, Espinosa-Díez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R,
López-Cabrera M, García-Bermejo ML and Lamas S: miR-9-5p suppresses
pro-fibrogenic transformation of fibroblasts and prevents organ
fibrosis by targeting NOX4 and TGFBR2. EMBO Rep. 16:1358–1377.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Karaayvaz M, Zhai H and Ju J: miR-129
promotes apoptosis and enhances chemosensitivity to 5-fluorouracil
in colorectal cancer. Cell Death Dis. 4:e6592013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang S, Hao J, Xie F, Hu X, Liu C, Tong
J, Zhou J, Wu J and Shao C: Downregulation of miR-132 by promoter
methylation contributes to pancreatic cancer development.
Carcinogenesis. 32:1183–1189. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu Z, Xiao SB, Xu P, Xie Q, Cao L, Wang D,
Luo R, Zhong Y, Chen HC and Fang LR: miR-365, a novel negative
regulator of interleukin-6 gene expression, is cooperatively
regulated by Sp1 and NF-kappaB. J Biol Chem. 286:21401–21412. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Dufek M, Rektorova I, Thon V, Lokaj J and
Rektor I: Interleukin-6 May contribute to mortality in Parkinson's
disease patients: A 4-year prospective study. Parkinsons Dis.
2015:8981922015.PubMed/NCBI
|
45
|
Scalzo P, Kümmer A, Cardoso F and Teixeira
AL: Serum levels of interleukin-6 are elevated in patients with
Parkinson's disease and correlate with physical performance.
Neurosci Lett. 468:56–58. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Fan MQ, Huang CB, Gu Y, Xiao Y, Sheng JX
and Zhong L: Decrease expression of microRNA-20a promotes cancer
cell proliferation and predicts poor survival of hepatocellular
carcinoma. J Exp Clin Cancer Res. 32:212013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tu K, Li C, Zheng X, Yang W, Yao Y and Liu
Q: Prognostic significance of miR-218 in human hepatocellular
carcinoma and its role in cell growth. Oncol Rep. 32:1571–1577.
2014.PubMed/NCBI
|
48
|
Leivonen SK, Mäkelä R, Ostling P, Kohonen
P, Haapa-Paananen S, Kleivi K, Enerly E, Aakula A, Hellström K,
Sahlberg N, et al: Protein lysate microarray analysis to identify
microRNAs regulating estrogen receptor signaling in breast cancer
cell lines. Oncogene. 28:3926–3936. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Roderburg C, Mollnow T, Bongaerts B,
Elfimova N, Cardenas D Vargas, Berger K, Zimmermann H, Koch A,
Vucur M, Luedde M, et al: Micro-RNA profiling in human serum
reveals compartment-specific roles of miR-571 and miR-652 in liver
cirrhosis. PLoS One. 7:e329992012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wei J, Ma Z, Li Y, Zhao B, Wang D and Jin
Y and Jin Y: miR-143 inhibits cell proliferation by targeting
autophagy-related 2B in non-small cell lung cancer H1299 cells. Mol
Med Rep. 11:571–576. 2015.PubMed/NCBI
|
51
|
Zehavi L, Avraham R, Barzilai A, Bar-Ilan
D, Navon R, Sidi Y, Avni D and Leibowitz-Amit R: Silencing of a
large microRNA cluster on human chromosome 14q32 in melanoma:
Biological effects of mir-376a and mir-376c on insulin growth
factor 1 receptor. Mol Cancer. 11:442012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lawrie CH, Gal S, Dunlop HM, Pushkaran B,
Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J,
Wainscoat JS, et al: Detection of elevated levels of
tumour-associated microRNAs in serum of patients with diffuse large
B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Gilad S, Meiri E, Yogev Y, Benjamin S,
Lebanony D, Yerushalmi N, Benjamin H, Kushnir M, Cholakh H, Melamed
N, et al: Serum microRNAs are promising novel biomarkers. PLoS One.
3:e31482008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Grasso M, Piscopo P, Confaloni A and Denti
MA: Circulating miRNAs as biomarkers for neurodegenerative
disorders. Molecules. 19:6891–6910. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Mestdagh P, Van Vlierberghe P, De Weer A,
Muth D, Westermann F, Speleman F and Vandesompele J: A novel and
universal method for microRNA RT-qPCR data normalization. Genome
Biol. 10:R642009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kang K, Peng X, Luo J and Gou D:
Identification of circulating miRNA biomarkers based on global
quantitative real-time PCR profiling. J Anim Sci Biotechnol.
3:42012. View Article : Google Scholar : PubMed/NCBI
|