1
|
Homey B, Steinhoff M, Ruzicka T and Leung
DY: Cytokines and chemokines orchestrate atopic skin inflammation.
J Allergy Clin Immunol. 118:178–189. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Albanesi C and Pastore S: Pathobiology of
chronic inflammatory skin diseases: Interplay between keratinocytes
and immune cells as a target for anti-inflammatory drugs. Curr Drug
Metab. 11:210–227. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gouwy M, Struyf S, Proost P and Van Damme
J: Synergy in cytokine and chemokine networks amplifies the
inflammatory response. Cytokine Growth Factor Rev. 16:561–580.
2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Koide M, Tokura Y, Furukawa F and Takigawa
M: Soluble intercellular adhesion molecule-1 (sICAM-1) in atopic
dermatitis. J Dermatol Sci. 8:151–156. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gniadecki R, Zachariae C and Calverley M:
Trends and developments in the pharmacological treatment of
psoriasis. Acta Derm Venereol. 82:401–410. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pastore S, Mascia F and Girolomoni G: The
contribution of keratinocytes to the pathogenesis of atopic
dermatitis. Eur J Dermatol. 16:125–131. 2006.PubMed/NCBI
|
7
|
Saeki H and Tamaki K: Thymus and
activation regulated chemokine (TARC)/CCL17 and skin diseases. J
Dermatol Sci. 43:75–84. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vestergaard C, Bang K, Gesser B, Yoneyama
H, Matsushima K and Larsen CG: A Th2 chemokine, TARC, produced by
keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional
atopic dermatitis skin. J Invest Dermatol. 115:640–646. 2000.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Toda S: Inhibitory effects of polyphenols
in leaves of Artemisia princeps PAMP on protein fragmentation by
Cu(II)-H2O2 in vitro. J Med Food. 7:52–54. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim TH, Lee SJ, Rim HK, Shin JS, Jung JY,
Heo JS, Kim JB, Lee MS and Lee KT: In vitro and in vivo
immunostimulatory effects of hot water extracts from the leaves of
Artemisia princeps Pampanini cv. Sajabal. J Ethnopharmacol.
149:254–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sarath VJ, So CS, Won YD and Gollapudi S:
Artemisia princeps var orientalis induces apoptosis in human breast
cancer MCF-7 cells. Anticancer Res. 27:3891–3898. 2007.PubMed/NCBI
|
12
|
Kim MJ, Han JM, Jin YY, Baek NI, Bang MH,
Chung HG, Choi MS, Lee KT, Sok DE and Jeong TS: In vitro
antioxidant and anti-inflammatory activities of Jaceosidin from
Artemisia princeps Pampanini cv. Sajabal. Arch Pharm Res.
31:429–437. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Trinh HT, Lee IA, Hyun YJ and Kim DH:
Artemisia princeps Pamp. Essential oil and its constituents
eucalyptol and α-terpineol ameliorate bacterial vaginosis and
vulvovaginal candidiasis in mice by inhibiting bacterial growth and
NF-κB activation. Planta Med. 77:1996–2002. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ryu SY, Kim JO and Choi SU: Cytotoxic
components of Artemisia princeps. Planta Med. 63:384–385. 1997.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ryu SH, Jo H, Kim JW, Youn HJ and Kim KB:
Four-Week repeated oral toxicity study of Aip1, a water-soluble
carbohydrate fraction from artemisia iwayomogi in mice. Toxicol
Res. 27:261–267. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ahn H, Kim JY, Lee HJ, Kim YK and Ryu JH:
Inhibitors of inducible nitric oxide synthase expression from
Artemisia iwayomogi. Arch Pharm Res. 26:301–305. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Schmitz J, Owyang A, Oldham E, Song Y,
Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et
al: IL-33, an interleukin-1-like cytokine that signals via the IL-1
receptor-related protein ST2 and induces T helper type 2-associated
cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sismanopoulos N, Delivanis DA,
Alysandratos KD, Angelidou A, Therianou A, Kalogeromitros D and
Theoharides TC: Mast cells in allergic and inflammatory diseases.
Curr Pharm Des. 18:2261–2277. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Voehringer D: Protective and pathological
roles of mast cells and basophils. Nat Rev Immunol. 13:362–375.
2013. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Cevikbas F and Steinhoff M: IL-33: A novel
danger signal system in atopic dermatitis. J Invest Dermatol.
132:1326–1329. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huneck S, Zdero C and Bohlmann F:
Seco-guaianolides and other constituents from Artemisia species.
Phytochemistry. 25:883–889. 1986. View Article : Google Scholar
|
22
|
Kwon TR, Oh CT, Choi EJ, Kim SR, Jang YJ,
Ko EJ, Suh D, Yoo KH and Kim BJ: Ultraviolet light-emitting-diode
irradiation inhibits TNF-α and IFN-γ-induced expression of ICAM-1
and STAT1 phosphorylation in human keratinocytes. Lasers Surg Med.
47:824–832. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kwon TR, Mun SK, Oh CT, Hong H, Choi YS
and Kim BJ and Kim BJ: Therapeutic effects of full spectrum light
on the development of atopic dermatitis-like lesions in NC/Nga
mice. Photochem Photobiol. 90:1160–1169. 2014.PubMed/NCBI
|
24
|
Chung KS, Choi JH, Back NI, Choi MS, Kang
EK, Chung HG, Jeong TS and Lee KT: Eupafolin, a flavonoid isolated
from Artemisia princeps, induced apoptosis in human cervical
adenocarcinoma HeLa cells. Mol Nutr Food Res. 54:1318–1328. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lee TH, Jung H, Park KH, Bang MH, Baek NI
and Kim J: Jaceosidin, a natural flavone, promotes angiogenesis via
activation of VEGFR2/FAK/PI3K/AKT/NF-κB signaling pathways in
endothelial cells. Exp Biol Med (Maywood). 239:1325–1334. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Darnell JE Jr, Kerr IM and Stark GR:
Jak-STAT pathways and transcriptional activation in response to
IFNs and other extracellular signaling proteins. Science.
264:1415–1421. 1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ju SM, Song HY, Lee SJ, Seo WY, Sin DH,
Goh AR, Kang YH, Kang IJ, Won MH, Yi JS, et al: Suppression of
thymus- and activation-regulated chemokine (TARC/CCL17) production
by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose via blockade of
NF-kappaB and STAT1 activation in the HaCaT cells. Biochem Biophys
Res Commun. 387:115–120. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cho JW, Lee KS and Kim CW: Curcumin
attenuates the expression of IL-1beta, IL-6,and TNF-alpha as well
as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs
as potential upstream targets. Int J Mol Med. 19:469–474.
2007.PubMed/NCBI
|
29
|
Sung YY, Kim YS and Kim HK: Illicium verum
extract inhibits TNF-α- and IFN-γ-induced expression of chemokines
and cytokines in human keratinocytes. J Ethnopharmacol.
144:182–189. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dustin ML, Singer KH, Tuck DT and Springer
TA: Adhesion of T lymphoblasts to epidermal keratinocytes is
regulated by interferon gamma and is mediated by intercellular
adhesion molecule 1 (ICAM-1). J Exp Med. 167:1323–1340. 1988.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Taniguchi K, Yamamoto S, Hitomi E, Inada
Y, Suyama Y1, Sugioka T and Hamasaki Y: Interleukin 33 is induced
by tumor necrosis factor alpha and interferon gamma in
keratinocytes and contributes to allergic contact dermatitis. J
Investig Allergol Clin Immunol. 23:428–434. 2013.PubMed/NCBI
|
32
|
Rainsford KD: Anti-inflammatory drugs in
the 21st century. Subcell Biochem. 42:3–27. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shu YZ: Recent natural products based drug
development: A pharmaceutical industry perspective. J Nat Prod.
61:1053–1071. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Moufid A and Eddouks M: Artemisia herba
alba: A popular plant with potential medicinal properties. Pak J
Biol Sci. 15:1152–1159. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Park EY, Lee KW, Lee HW, Cho YW, Baek NI,
Chung HG, Jeong TS, Choi MS and Lee KT: The ethanol extract from
Artemisia princeps Pampanini induces p53-mediated G1 phase arrest
in A172 human neuroblastoma cells. J Med Food. 11:237–245. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kang YJ, Jung UJ, Lee MK, Kim HJ, Jeon SM,
Park YB, Chung HG, Baek NI, Lee KT, Jeong TS and Choi MS:
Eupatilin, isolated from Artemisia princeps Pampanini, enhances
hepatic glucose metabolism and pancreatic beta-cell function in
type 2 diabetic mice. Diabetes Res Clin Pract. 82:25–32. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Tsuda T, Tohyama M, Yamasaki K, Shirakata
Y, Yahata Y, Tokumaru S, Sayama K and Hashimoto K: Lack of evidence
for TARC/CCL17 production by normal human keratinocytes in
vitro. J Dermatol Sci. 31:37–42. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boehm U, Klamp T, Groot M and Howard JC:
Cellular responses to interferon-gamma. Annu Rev Immunol.
15:749–795. 1997. View Article : Google Scholar : PubMed/NCBI
|
39
|
Park JH, Kim MS, Jeong GS and Yoon J:
Xanthii fructus extract inhibits TNF-α/IFN-γ-induced Th2-chemokines
production via blockade of NF-κB, STAT1 and p38-MAPK activation in
human epidermal keratinocytes. J Ethnopharmacol. 171:85–93. 2015.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Jung MR, Lee TH, Bang MH, Kim H, Son Y,
Chung DK and Kim J: Suppression of thymus- and activation-regulated
chemokine (TARC/CCL17) production by
3-O-β-D-glucopyanosylspinasterol via blocking NF-κB and STAT1
signaling pathways in TNF-α and IFN-γ-induced HaCaT keratinocytes.
Biochem Biophys Res Commun. 427:236–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Carmi-Levy I, Homey B and Soumelis V: A
modular view of cytokine networks in atopic dermatitis. Clin Rev
Allergy Immunol. 41:245–253. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Barker JN, Mitra RS, Griffiths CE, Dixit
VM and Nickoloff BJ: Keratinocytes as initiators of inflammation.
Lancet. 337:211–214. 1991. View Article : Google Scholar : PubMed/NCBI
|
43
|
Meephansan J, Tsuda H, Komine M, Tominaga
S and Ohtsuki M: Regulation of IL-33 expression by IFN-γ and tumor
necrosis factor-α in normal human epidermal keratinocytes. J Invest
Dermatol. 132:2593–2600. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yoo JS, Ahn EM, Bang MH, Song MC, Yang HJ,
Kim DH, Lee DY, Chung HG, Jeong TS, Lee KT, et al: Steroids from
the aerial parts of Artemisia princeps Pampanini. Hanguk Yakyong
Changmul Hakhoe Chi. 14:273–277. 2006.
|
45
|
Lee YW, Jin Y and Row KH: Extraction and
purification of eupatilin fromArtemisia princeps PAMPAN recycling
preparative HPLC. Korean J Chem Engineering. 23:279–282. 2006.
View Article : Google Scholar
|