1
|
Saadi I, Das P, Zhao M, Raj L, Ruspita I,
Xia Y, Papaioannou VE and Bei M: Msx1 and Tbx2 antagonistically
regulate Bmp4 expression during the bud-to-cap stage transition in
tooth development. Development. 140:2697–2702. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jia S, Zhou J, Gao Y, Baek JA, Martin JF,
Lan Y and Jiang R: Roles of Bmp4 during tooth morphogenesis and
sequential tooth formation. Development. 140:423–432. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Z, Lan Y, Chai Y and Jiang R:
Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into
a single row. Science. 323:1232–1234. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhao Z, Stock D, Buchanan A and Weiss K:
Expression of Dlx genes during the development of the murine
dentition. Dev Genes Evol. 210:270–275. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fujimori S, Novak H, Weissenböck M,
Jussila M, Gonçalves A, Zeller R, Galloway J, Thesleff I and
Hartmann C: Wnt/β-catenin signaling in the dental mesenchyme
regulates incisor development by regulating Bmp4. Dev Biol.
348:97–106. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sasaki H, Muramatsu T, Kwon HJ, Yamamoto
H, Hashimoto S, Jung HS and Shimono M: Down-regulated genes in
mouse dental papillae and pulp. J Dent Res. 89:679–683. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ozcelik T, Porteus MH, Rubenstein JL and
Francke U: DLX2 (TES1), a homeobox gene of the Distal-less family,
assigned to conserved regions on human and mouse chromosomes 2.
Genomics. 13:1157–1161. 1992. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stock DW, Ellies DL, Zhao Z, Ekker M,
Ruddle FH and Weiss KM: The evolution of the vertebrate Dlx gene
family. Proc Natl Acad Sci USA. 93:10858–10863. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Qiu M, Bulfone A, Ghattas I, Meneses JJ,
Christensen L, Sharpe PT, Presley R, Pedersen RA and Rubenstein JL:
Role of the Dlx homeobox genes in proximodistal patterning of the
branchial arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and −2 alter
morphogenesis of proximal skeletal and soft tissue structures
derived from the first and second arches. Dev Biol. 185:165–184.
1997. View Article : Google Scholar : PubMed/NCBI
|
10
|
Eisenstat DD, Liu JK, Mione M, Zhong W, Yu
G, Anderson SA, Ghattas I, Puelles L and Rubenstein JL: DLX-1,
DLX-2, and DLX-5 expression define distinct stages of basal
forebrain differentiation. J Comp Neurol. 414:217–237. 1999.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Depew MJ, Simpson CA, Morasso M and
Rubenstein JL: Reassessing the Dlx code: The genetic regulation of
branchial arch skeletal pattern and development. J Anat.
207:501–561. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Qiu M, Bulfone A, Martinez S, Meneses JJ,
Shimamura K, Pedersen RA and Rubenstein JL: Null mutation of Dlx-2
results in abnormal morphogenesis of proximal first and second
branchial arch derivatives and abnormal differentiation in the
forebrain. Genes Dev. 9:2523–2538. 1995. View Article : Google Scholar : PubMed/NCBI
|
13
|
Dai J, Kuang Y, Fang B, Gong H, Lu S, Mou
Z, Sun H, Dong Y, Lu J, Zhang W, et al: The effect of
overexpression of Dlx2 on the migration, proliferation and
osteogenic differentiation of cranial neural crest stem cells.
Biomaterials. 34:1898–1910. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
McKeown SJ, Newgreen DF and Farlie PG:
Dlx2 over-expression regulates cell adhesion and mesenchymal
condensation in ectomesenchyme. Dev Biol. 281:22–37. 2005.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Gordon CT, Brinas IM, Rodda FA, Bendall AJ
and Farlie PG: Role of Dlx genes in craniofacial morphogenesis:
Dlx2 influences skeletal patterning by inducing ectomesenchymal
aggregation in ovo. Evol Dev. 12:459–473. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jeong J, Cesario J, Zhao Y, Burns L,
Westphal H and Rubenstein JL: Cleft palate defect of Dlx1/2-/−
mutant mice is caused by lack of vertical outgrowth in the
posterior palate. Dev Dyn. 241:1757–1769. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Thomas BL, Tucker AS, Qui M, Ferguson CA,
Hardcastle Z, Rubenstein JL and Sharpe PT: Role of Dlx-1 and Dlx-2
genes in patterning of the murine dentition. Development.
124:4811–4818. 1997.PubMed/NCBI
|
18
|
Lezot F, Thomas B, Greene SR, Hotton D,
Yuan ZA, Castaneda B, Bolaños A, Depew M, Sharpe P, Gibson CW and
Berdal A: Physiological implications of DLX homeoproteins in enamel
formation. J Cell Physiol. 216:688–697. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lezot F, Davideau JL, Thomas B, Sharpe P,
Forest N and Berdal A: Epithelial Dlx-2 homeogene expression and
cementogenesis. J Histochem Cytochem. 48:277–284. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Duverger O, Zah A, Isaac J, Sun HW,
Bartels AK, Lian JB, Berdal A, Hwang J and Morasso MI: Neural crest
deletion of Dlx3 leads to major dentin defects through
down-regulation of Dspp. J Biol Chem. 287:12230–12240. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chai Y, Jiang X, Ito Y, Bringas P Jr, Han
J, Rowitch DH, Soriano P, McMahon AP and Sucov HM: Fate of the
mammalian cranial neural crest during tooth and mandibular
morphogenesis. Development. 127:1671–1679. 2000.PubMed/NCBI
|
22
|
Foster BL, Soenjaya Y, Nociti FH Jr, Holm
E, Zerfas PM, Wimer HF, Holdsworth DW, Aubin JE, Hunter GK,
Goldberg HA and Somerman MJ: Deficiency in acellular cementum and
periodontal attachment in bsp null mice. J Dent Res. 92:166–172.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fong H, Chu EY, Tompkins KA, Foster BL,
Sitara D, Lanske B and Somerman MJ: Aberrant cementum phenotype
associated with the hypophosphatemic hyp mouse. J Periodontol.
80:1348–1354. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Thomas BL and Sharpe PT: Patterning of the
murine dentition by homeobox genes. Eur J Oral Sci. 106:(Suppl 1).
S48–S54. 1998. View Article : Google Scholar
|
25
|
Thomas BL, Liu JK, Rubenstein JL and
Sharpe PT: Independent regulation of Dlx2 expression in the
epithelium and mesenchyme of the first branchial arch. Development.
127:217–224. 2000.PubMed/NCBI
|
26
|
Zhao H, Oka K, Bringas P, Kaartinen V and
Chai Y: TGF-beta type I receptor Alk5 regulates tooth initiation
and mandible patterning in a type II receptor-independent manner.
Dev Biol. 320:19–29. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang XF and Chai Y: Molecular regulatory
mechanism of tooth root development. Int J Oral Sci. 4:177–181.
2012. View Article : Google Scholar : PubMed/NCBI
|