1
|
Langer R and Vacanti JP: Tissue
engineering. Science. 260:920–926. 1993. View Article : Google Scholar : PubMed/NCBI
|
2
|
Grimm D, Bauer J, Kossmehl P, Shakibaei M,
Schöberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C,
Paul M and Cogoli A: Simulated microgravity alters differentiation
and increases apoptosis in human follicular thyroid carcinoma
cells. FASEB J. 16:604–606. 2002.PubMed/NCBI
|
3
|
Hochleitner B, Hengster P, Duo L, Bucher
H, Klima G and Margreiter R: A novel bioartificial liver with
culture of porcine hepatocyte aggregates under simulated
microgravity. Artif Organs. 29:58–66. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Marquette ML, Byerly D and Sognier M: A
novel in vitro three-dimensional skeletal muscle model. In Vitro
Cell Dev Biol Anim. 43:255–263. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yuge L, Kajiume T, Tahara H, Kawahara Y,
Umeda C, Yoshimoto R, Wu SL, Yamaoka K, Asashima M, Kataoka K and
Ide T: Microgravity potentiates stem cell proliferation while
sustaining the capability of differentiation. Stem Cells Dev.
15:921–929. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huang Y, Dai ZQ, Ling SK, Zhang HY, Wan YM
and Li YH: Gravity, a regulation factor in the differentiation of
rat bone marrow mesenchymal stem cells. J Biomed Sci. 16:872009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen J, Liu R, Yang Y, Li J, Zhang X, Wang
Z and Ma J: The simulated microgravity enhances the differentiation
of mesenchymal stem cells into neurons. Neurosci Lett. 505:171–175.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dai ZQ, Wang R, Ling SK, Wan YM and Li YH:
Simulated microgravity inhibits the proliferation and osteogenesis
of rat bone marrow mesenchymal stem cells. Cell Prolif. 40:671–684.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
McBeath R, Pirone DM, Nelson CM,
Bhadriraju K and Chen CS: Cell shape, cytoskeletal tension, and
RhoA regulate stem cell lineage commitment. Dev Cell. 6:483–495.
2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kilian KA, Bugarija B, Lahn BT and Mrksich
M: Geometric cues for directing the differentiation of mesenchymal
stem cells. Proc Natl Acad Sci USA. 107:4872–4877. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hughes-Fulford M and Lewis ML: Effects of
microgravity on osteoblast growth activation. Exp Cell Res.
224:103–109. 1996. View Article : Google Scholar : PubMed/NCBI
|
12
|
Schatten H, Lewis ML and Chakrabarti A:
Spaceflight and clinorotation cause cytoskeleton and mitochondria
changes and increases in apoptosis in cultured cells. Acta
Astronaut. 49:399–418. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Uva BM, Masini MA, Sturla M, Prato P,
Passalacqua M, Giuliani M, Tagliafierro G and Strollo F:
Clinorotation-induced weightlessness influences the cytoskeleton of
glial cells in culture. Brain Res. 934:132–139. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hall A: Rho GTPases and the actin
cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Azizi SA, Stokes D, Augelli BJ, DiGirolamo
C and Prockop DJ: Engraftment and migration of human bone marrow
stromal cells implanted in the brains of albino rats-similarities
to astrocyte grafts. Proc Natl Acad Sci USA. 95:3908–3913. 1998.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang X, Ren Q, Fu S and Jiang P:
Development and application of clinostat for simulation of
microgravity biological effects. Acta Biophysica Sinica.
13:161–166. 1997.
|
17
|
Jiang J, Lv Z, Gu Y, Li J, Xu L, Xu W, Lu
J and Xu J: Adult rat mesenchymal stem cells differentiate into
neuronal-like phenotype and express a variety of neuro-regulatory
molecules in vitro. Neurosci Res. 66:46–52. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jaiswal N, Haynesworth SE, Caplan AI and
Bruder SP: Osteogenic differentiation of purified, culture-expanded
human mesenchymal stem cells in vitro. J Cell Biochem. 64:295–312.
1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Oswald J, Boxberger S, Jorgensen B,
Feldmann S, Ehninger G, Bornhäuser M and Werner C: Mesenchymal stem
cells can be differentiated into endothelial cells in vitro. Stem
Cells. 22:377–384. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xiang Y, Zheng Q, Jia B, Huang G, Xie C,
Pan J and Wang J: Ex vivo expansion, adipogenesis and neurogenesis
of cryopreserved human bone marrow mesenchymal stem cells. Cell
Biol Int. 31:444–450. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Spiegelman BM and Ginty CA: Fibronectin
modulation of cell shape and lipogenic gene expression in
3T3-adipocytes. Cell. 35:657–666. 1983. View Article : Google Scholar : PubMed/NCBI
|
22
|
Baksh D, Song L and Tuan RS: Adult
mesenchymal stem cells: Characterization, differentiation, and
application in cell and gene therapy. J Cell Mol Med. 8:301–316.
2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zayzafoon M, Gathings WE and McDonald JM:
Modeled microgravity inhibits osteogenic differentiation of human
mesenchymal stem cells and increases adipogenesis. Endocrinology.
145:2421–2432. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Buravkova L, Romanov Y, Rykova M,
Grigorieva O and Merzlikina N: Cell-to-cell interactions in changed
gravity: Ground-based and flight experiments. Acta Astronaut.
57:67–74. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
McBeath R, Pirone DM, Nelson CM,
Bhadriraju K and Chen CS: Cell shape, cytoskeletal tension, and
rhoa regulate stem cell lineage commitment. Dev Cell. 6:483–495.
2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Carnac G, Primig M, Kitzmann M, Chafey P,
Tuil D, Lamb N and Fernandez A: RhoA GTPase and serum response
factor control selectively the expression of MyoD without affecting
Myf5 in mouse myoblasts. Mol Biol Cell. 9:1891–1902. 1998.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Sordella R, Jiang W, Chen GC, Curto M and
Settleman J: Modulation of Rho GTPase signaling regulates a switch
between adipogenesis and myogenesis. Cell. 113:147–158. 2003.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Young KG and Copeland JW: Formins in cell
signaling. Biochim Biophys Acta. 1803:183–190. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Maekawa M, Ishizaki T, Boku S, Watanabe N,
Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K and Narumiya S:
Signaling from Rho to the actin cytoskeleton through protein
kinases ROCK and LIM-kinase. Science. 285:895–898. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hotulainen P and Lappalainen P: Stress
fibers are generated by two distinct actin assembly mechanisms in
motile cells. J Cell Biol. 173:383–394. 2006. View Article : Google Scholar : PubMed/NCBI
|