1
|
Farhat GN, Strotmeyer ES, Newman AB,
Sutton-Tyrrell K, Bauer DC, Harris T, Johnson KC, Taaffe DR and
Cauley JA: Volumetric and areal bone mineral density measures are
associated with cardiovascular disease in older men and women: The
health, aging, and body composition study. Calcif Tissue Int.
79:102–111. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Farhat GN, Newman AB, Sutton-Tyrrell K,
Matthews KA, Boudreau R, Schwartz AV, Harris T, Tylavsky F, Visser
M and Cauley JA: Health ABC Study: The association of bone mineral
density measures with incident cardiovascular disease in older
adults. Osteoporos Int. 18:999–1008. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jørgensen L, Engstad T and Jacobsen BK:
Bone mineral density in acute stroke patients: Low bone mineral
density may predict first stroke in women. Stroke. 32:47–51. 2001.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Schulz E, Arfai K, Liu X, Sayre J and
Gilsanz V: Aortic calcification and the risk of osteoporosis and
fractures. J Clin Endocrinol Metab. 89:4246–4253. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hyder JA, Allison MA, Wong N, Papa A, Lang
TF, Sirlin C, Gapstur SM, Ouyang P, Carr JJ and Criqui MH:
Association of coronary artery and aortic calcium with lumbar bone
density: The MESA Abdominal Aortic Calcium Study. Am J Epidemiol.
169:186–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sinnott B, Syed I, Sevrukov A and
Barengolts E: Coronary calcification and osteoporosis in men and
postmenopausal women are independent processes associated with
aging. Calcif Tissue Int. 78:195–202. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hampson G, Edwards S, Conroy S, Blake GM,
Fogelman I and Frost ML: The relationship between inhibitors of the
Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone
mineral density, vascular calcification and arterial stiffness in
post-menopausal women. Bone. 56:42–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ducy P: The role of osteocalcin in the
endocrine cross-talk between bone remodelling and energy
metabolism. Diabetologia. 54:1291–1297. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schwetz V, Pieber T and Obermayer-Pietsch
B: The endocrine role of the skeleton: Background and clinical
evidence. Eur J Endocrinol. 166:959–967. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim KM, Lim S, Moon JH, Jin H, Jung KY,
Shin CS, Park KS, Jang HC and Choi SH: Lower uncarboxylated
osteocalcin and higher sclerostin levels are significantly
associated with coronary artery disease. Bone. 83:178–183. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
MacDonald BT, Tamai K and He X:
Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev
Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Krishnan V, Bryant HU and Macdougald OA:
Regulation of bone mass by Wnt signaling. J Clin Invest.
116:1202–1209. 2006. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Reis M and Liebner S: Wnt signaling in the
vasculature. Exp Cell Res. 319:1317–1323. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Moester MJ, Papapoulos SE, Löwik CW and
van Bezooijen RL: Sclerostin: Current knowledge and future
perspectives. Calcif Tissue Int. 87:99–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brabnikova-Maresova K, Jarosova K, Pavelka
K and Stepan JJ: Serum sclerostin in high-activity adult patients
with juvenile idiopathic arthritis. Arthritis Res Ther. 16:4602014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mao B, Wu W, Davidson G, Marhold J, Li M,
Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, et al: Kremen
proteins are Dickkopf receptors that regulate Wnt/β-catenin
signalling. Nature. 417:664–667. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gennari L, Merlotti D, Valenti R,
Ceccarelli E, Ruvio M, Pietrini MG, Capodarca C, Franci MB,
Campagna MS, Calabrò A, et al: Circulating sclerostin levels and
bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol
Metab. 97:1737–1744. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gaudio A, Privitera F, Battaglia K,
Torrisi V, Sidoti MH, Pulvirenti I, Canzonieri E, Tringali G and
Fiore CE: Sclerostin levels associated with inhibition of the
Wnt/β-catenin signaling and reduced bone turnover in type 2
diabetes mellitus. J Clin Endocrinol Metab. 97:3744–3750. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Cejka D, Herberth J, Branscum AJ, Fardo
DW, Monier-Faugere MC, Diarra D, Haas M and Malluche HH: Sclerostin
and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol.
6:877–882. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Morales-Santana S, García-Fontana B,
García-Martín A, Rozas-Moreno P, García-Salcedo JA, Reyes-García R
and Muñoz-Torres M: Atherosclerotic disease in type 2 diabetes is
associated with an increase in sclerostin levels. Diabetes Care.
36:1667–1674. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kuipers AL, Miljkovic I, Carr JJ, Terry
JG, Nestlerode CS, Ge Y, Bunker CH, Patrick AL and Zmuda JM:
Association of circulating sclerostin with vascular calcification
in Afro-Caribbean men. Atherosclerosis. 239:218–223. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Claes KJ, Viaene L, Heye S, Meijers B,
dHaese P and Evenepoel P: Sclerostin: Another vascular
calcification inhibitor? J Clin Endocrinol Metab. 98:3221–3228.
2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gaudio A, Privitera F, Pulvirenti I,
Canzonieri E, Rapisarda R and Fiore CE: The relationship between
inhibitors of the Wnt signalling pathway (sclerostin and
Dickkopf-1) and carotid intima-media thickness in postmenopausal
women with type 2 diabetes mellitus. Diab Vasc Dis Res. 11:48–52.
2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bauer M, Caviezel S, Teynor A, Erbel R,
Mahabadi AA and Schmidt-Trucksäss A: Carotid intima-media thickness
as a biomarker of subclinical atherosclerosis. Swiss Med Wkly.
142:w137052012.PubMed/NCBI
|
25
|
van den Oord SC, Sijbrands EJ, ten Kate
GL, van Klaveren D, van Domburg RT, van der Steen AF and Schinkel
AF: Carotid intima-media thickness for cardiovascular risk
assessment: Systematic review and meta-analysis. Atherosclerosis.
228:1–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tomiyama H and Yamashina A: Non-invasive
vascular function tests: Their pathophysiological background and
clinical application. Circ J. 74:24–33. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mitchell GF, Hwang SJ, Vasan RS, Larson
MG, Pencina MJ, Hamburg NM, Vita JA, Levy D and Benjamin EJ:
Arterial stiffness and cardiovascular events: The Framingham Heart
Study. Circulation. 121:505–511. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nambi V, Chambless L, Folsom AR, He M, Hu
Y, Mosley T, Volcik K, Boerwinkle E and Ballantyne CM: Carotid
intima-media thickness and presence or absence of plaque improves
prediction of coronary heart disease risk: The ARIC
(Atherosclerosis Risk In Communities) study. J Am Coll Cardiol.
55:1600–1607. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Alagona C, Soro A, Westerbacka J, Ylitalo
K, Salonen JT, Salonen R, Yki-Järvinen H and Taskinen MR: Low HDL
cholesterol concentration is associated with increased intima-media
thickness independent of arterial stiffness in healthy subjects
from families with low HDL cholesterol. Eur J Clin Invest.
33:457–463. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pauca AL, ORourke MF and Kon ND:
Prospective evaluation of a method for estimating ascending aortic
pressure from the radial artery pressure waveform. Hypertension.
38:932–937. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kelly R, Hayward C, Avolio A and ORourke
M: Noninvasive determination of age-related changes in the human
arterial pulse. Circulation. 80:1652–1659. 1989. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wilkinson IB, MacCallum H, Rooijmans DF,
Murray GD, Cockcroft JR, McKnight JA and Webb DJ: Increased
augmentation index and systolic stress in type 1 diabetes mellitus.
QJM. 93:441–448. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wilkinson IB, Prasad K, Hall IR, Thomas A,
MacCallum H, Webb DJ, Frenneaux MP and Cockcroft JR: Increased
central pulse pressure and augmentation index in subjects with
hypercholesterolemia. J Am Coll Cardiol. 39:1005–1011. 2002.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Avolio AP, Chen SG, Wang RP, Zhang CL, Li
MF and ORourke MF: Effects of aging on changing arterial compliance
and left ventricular load in a northern Chinese urban community.
Circulation. 68:50–58. 1983. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nichols WW and ORourke MF: Properties of
the arterial wallMcDonalds Blood Flow in Arteries: Theoretical,
Experimental and Clinical Principles. 3rd. Edward Arnold; London:
pp. 77–114. 1990
|
36
|
Lehmann ED, Gosling RG and Sönksen PH:
Arterial wall compliance in diabetes. Diabet Med. 9:114–119. 1992.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Wada T, Kodaira K, Fujishiro K, Maie K,
Tsukiyama E, Fukumoto T, Uchida T and Yamazaki S: Correlation of
ultrasound-measured common carotid artery stiffness with
pathological findings. Arterioscler Thromb. 14:479–482. 1994.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Amar J, Ruidavets JB, Chamontin B, Drouet
L and Ferrières J: Arterial stiffness and cardiovascular risk
factors in a population-based study. J Hypertens. 19:381–387. 2001.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Blacher J, Asmar R, Djane S, London GM and
Safar ME: Aortic pulse wave velocity as a marker of cardiovascular
risk in hypertensive patients. Hypertension. 33:1111–1117. 1999.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Cruickshank K, Riste L, Anderson SG,
Wright JS, Dunn G and Gosling RG: Aortic pulse-wave velocity and
its relationship to mortality in diabetes and glucose intolerance:
An integrated index of vascular function? Circulation.
106:2085–2090. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Morena M, Jaussent I, Dupuy AM, Bargnoux
AS, Kuster N, Chenine L, Leray-Moragues H, Klouche K, Vernhet H,
Canaud B, et al: Osteoprotegerin and sclerostin in chronic kidney
disease prior to dialysis: Potential partners in vascular
calcifications. Nephrol Dial Transplant. 30:1345–1356. 2015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Desjardins L, Liabeuf S, Oliveira RB,
Louvet L, Kamel S, Lemke HD, Vanholder R, Choukroun G and Massy ZA:
European Uremic Toxin (EUTox) Work Group: Uremic toxicity and
sclerostin in chronic kidney disease patients. Nephrol Ther.
10:463–470. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hsu BG, Liou HH, Lee CJ, Chen YC, Ho GJ
and Lee MC: Serum sclerostin as an independent marker of peripheral
arterial stiffness in renal transplantation recipients: A
cross-sectional study. Medicine (Baltimore). 95:e33002016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Register TC, Hruska KA, Divers J, Bowden
DW, Palmer ND, Carr JJ, Wagenknecht LE, Hightower RC, Xu J, Smith
SC, et al: Plasma Dickkopf1 (DKK1) concentrations negatively
associate with atherosclerotic calcified plaque in
African-Americans with type 2 diabetes. J Clin Endocrinol Metab.
98:E60–E65. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Evrard S, Delanaye P, Kamel S, Cristol JP,
Cavalier E, Arnaud J, Zaoui P, Carlier MC, Laville M, Fouque D, et
al: SFBC/SN joined working group on vascular calcifications:
Vascular calcification: From pathophysiology to biomarkers. Clin
Chim Acta. 438:401–414. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Arderiu G, Espinosa S, Peña E, Aledo R and
Badimon L: Monocyte-secreted Wnt5a interacts with FZD5 in
microvascular endothelial cells and induces angiogenesis through
tissue factor signaling. J Mol Cell Biol. 6:380–393. 2014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Lee DK, Grantham Nathan R, Trachte AL,
Mannion JD and Wilson CL: Activation of the canonical Wnt/β-catenin
pathway enhances monocyte adhesion to endothelial cells. Biochem
Biophys Res Commun. 347:109–116. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lim Y, Kim CH, Lee SY, Kim H, Ahn SH, Lee
SH, Koh JM, Rhee Y, Baek KH, Min YK, et al: Decreased plasma levels
of sclerostin but not Dickkopf-1 are associated with an increased
prevalence of osteoporotic fracture and lower bone mineral density
in postmenopausal Korean women. Calcif Tissue Int. 99:350–359.
2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Thambiah S, Roplekar R, Manghat P,
Fogelman I, Fraser WD, Goldsmith D and Hampson G: Circulating
sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney
disease (CKD): Relationship with bone density and arterial
stiffness. Calcif Tissue Int. 90:473–480. 2012. View Article : Google Scholar : PubMed/NCBI
|