1
|
Han Y, Luo H and Zhang Y: Congenital
anomalies in infants conceived by infertile women through assisted
reproductive technology: A cohort study 2004–2014. Exp Ther Med.
16:3179–3185. 2018.PubMed/NCBI
|
2
|
Zhang QF, Chen GY, Liu Y, Huang HJ and
Song YF: Relationship between resistin and IL-23 levels in
follicular fluid in infertile patients with endometriosis
undergoing IVF-ET. Adv Clin Exp Med. 26:1431–1435. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xiong F, Hu L, Zhang Y and Xiao X:
Correlation of hypertensive disorders in pregnancy with procedures
of in vitro fertilization and pregnancy outcomes. Exp Ther
Med. 14:5405–5410. 2017.PubMed/NCBI
|
4
|
Padhee M, Zhang S, Lie S, Wang KC, Botting
KJ, McMillen IC, MacLaughlin SM and Morrison JL: The
periconceptional environment and cardiovascular disease: Does in
vitro embryo culture and transfer influence cardiovascular
development and health? Nutrients. 7:1378–1425. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao J, Yan Y, Huang X and Li Y: Do the
children born after assisted reproductive technology have an
increased risk of birth defects? A systematic review and
meta-analysis. J Matern Fetal Neonatal Med. 33:322–333. 2020.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Antonelli MC, Pallarés ME, Ceccatelli S
and Spulber S: Long-term consequences of prenatal stress and
neurotoxicants exposure on neurodevelopment. Prog Neurobiol.
155:21–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schagdarsurengin U, Western P, Steger K
and Meinhardt A: Developmental origins of male subfertility: Role
of infection, inflammation, and environmental factors. Semin
Immunopathol. 38:765–781. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ly L, Chan D and Trasler JM: Developmental
windows of susceptibility for epigenetic inheritance through the
male germline. Semin Cell Dev Biol. 43:96–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Rahat B, Thakur S, Bagga R and Kaur J:
Epigenetic regulation of STAT5A and its role as fetal DNA
epigenetic marker during placental development and dysfunction.
Placenta. 44:46–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Panchenko PE, Lemaire M, Fneich S, Voisin
S, Jouin M, Junien C and Gabory A: Epigenetics and nutrition:
Maternal nutrition impacts on placental development and health of
offspring. Biol Aujourdhui. 209:175–187. 2015.(In French).
View Article : Google Scholar : PubMed/NCBI
|
11
|
Vincent RN, Gooding LD, Louie K, Chan Wong
E and Ma S: Altered DNA methylation and expression of PLAGL1 in
cord blood from assisted reproductive technology pregnancies
compared with natural conceptions. Fertil Steril. 106:739–748.e3.
2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
de Waal E, Mak W, Calhoun S, Stein P, Ord
T, Krapp C, Coutifaris C, Schultz RM and Bartolomei MS: In vitro
culture increases the frequency of stochastic epigenetic errors at
imprinted genes in placental tissues from mouse concepti produced
through assisted reproductive technologies. Biol Reprod. 90:222014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Giritharan G, Delle Piane L, Donjacour A,
Esteban FJ, Horcajadas JA, Maltepe E and Rinaudo P: In vitro
culture of mouse embryos reduces differential gene expression
between inner cell mass and trophectoderm. Reprod Sci. 19:243–252.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mann MR, Lee SS, Doherty AS, Verona RI,
Nolen LD, Schultz RM and Bartolomei MS: Selective loss of
imprinting in the placenta following preimplantation development in
culture. Development. 131:3727–3735. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shi X, Yin Z, Ling B, Wang L, Liu C, Ruan
X, Zhang W and Chen L: Rho differentially regulates the Hippo
pathway by modulating the interaction between Amot and Nf2 in the
blastocyst. Development. 144:3957–3967. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kurowski A, Molotkov A and Soriano P:
FGFR1 regulates trophectoderm development and facilitates
blastocyst implantation. Dev Biol. 446:94–101. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ng KYB, Mingels R, Morgan H, Macklon N and
Cheong Y: In vivo oxygen, temperature and pH dynamics in the female
reproductive tract and their importance in human conception: A
systematic review. Hum Reprod Update. 24:15–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wale PL and Gardner DK: The effects of
chemical and physical factors on mammalian embryo culture and their
importance for the practice of assisted human reproduction. Hum
Reprod Update. 22:2–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chang TA, Bondarenko GI, Gerami-Naini B,
Drenzek JG, Durning M, Garthwaite MA, Schmidt JK and Golos TG:
Trophoblast differentiation, invasion and hormone secretion in a
three-dimensional in vitro implantation model with rhesus monkey
embryos. Reprod Biol Endocrinol. 16:242018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Senapati S, Wang F, Ord T, Coutifaris C,
Feng R and Mainigi M: Superovulation alters the expression of
endometrial genes critical to tissue remodeling and placentation. J
Assist Reprod Genet. 35:1799–1808. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wu L, Li J, Xu HL, Xu B, Tong XH, Kwak-Kim
J and Liu YS: IL-7/IL-7R signaling pathway might play a role in
recurrent pregnancy losses by increasing inflammatory Th17 cells
and decreasing Treg cells. Am J Reprod Immunol. 76:454–464. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cele SB, Odun-Ayo F, Onyangunga OA,
Moodley J and Naicker T: Analysis of hepatocyte growth factor
immunostaining in the placenta of HIV-infected normotensive versus
preeclamptic pregnant women. Eur J Obstet Gynecol Reprod Biol.
227:60–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Balogh A, Toth E, Romero R, Parej K, Csala
D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, et al:
Placental galectins are key players in regulating the maternal
adaptive immune response. Front Immunol. 19:12402019. View Article : Google Scholar
|
24
|
Barrientos G, Pussetto M, Rose M, Staff
AC, Blois SM and Toblli JE: Defective trophoblast invasion
underlies fetal growth restriction and preeclampsia-like symptoms
in the stroke-prone spontaneously hypertensive rat. Mol Hum Reprod.
23:509–519. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
He YX, Zhang Y, Yang Q, Wang C and Su G:
Selection of suitable reference genes for reverse
transcription-quantitative polymerase chain reaction analysis of
neuronal cells differentiated from bone mesenchymal stem cells. Mol
Med Rep. 12:2291–2300. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rao X, Huang X, Zhou Z and Lin X: An
improvement of the 2ˆ(-delta delta CT) method for quantitative
real-time polymerase chain reaction data analysis. Biostat
Bioinforma Biomath. 3:71–85. 2013.PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Dheda K, Huggett JF, Bustin SA, Johnson
MA, Rook G and Zumla A: Validation of housekeeping genes for
normalizing RNA expression in real-time PCR. Biotechniques.
37:112–114. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kanehisa M, Furumichi M, Tanabe M, Sato Y
and Morishima K: KEGG: New perspectives on genomes, pathways,
diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Choi JH, Jung J, Na KH, Cho KJ, Yoon TK
and Kim GJ: Effect of mesenchymal stem cells and extracts derived
from the placenta on trophoblast invasion and immune responses.
Stem Cells Dev. 23:132–145. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ujita M, Kondoh E, Chigusa Y, Mogami H,
Kawasaki K, Kiyokawa H, Kawamura Y, Takai H, Sato M, Horie A, et
al: Impaired Wnt5a signaling in extravillous trophoblasts:
Relevance to poor placentation in early gestation and subsequent
preeclampsia. Pregnancy Hypertens. 13:225–234. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Uusküla L, Männik J, Rull K, Minajeva A,
Kõks S, Vaas P, Teesalu P, Reimand J and Laan M: Mid-gestational
gene expression profile in placenta and link to pregnancy
complications. PLoS One. 7:e492482012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Burton GJ, Fowden AL and Thornburg KL:
Placental origins of chronic disease. Physiol Rev. 96:1509–1565.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tarrade A, Panchenko P, Junien C and
Gabory A: Placental contribution to nutritional programming of
health and diseases: Epigenetics and sexual dimorphism. J Exp Biol.
218:50–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ghaheri A, Rasekhi A, Omani Samani R and
Hajizadeh E: modeling in vitro fertilization data considering
multiple outcomes observed among Iranian infertile women. Int J
Fertil Steril. 12:27–30. 2018.PubMed/NCBI
|
36
|
Pereira L, Tabata T, Petitt M and
Fang-Hoover J: Congenital cytomegalovirus infection undermines
early development and functions of the human placenta. Placenta. 59
(Suppl 1):S8–S16. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Puscheck EE, Awonuga AO, Yang Y, Jiang Z
and Rappolee DA: Molecular biology of the stress response in the
early embryo and its stem cells. Adv Exp Med Biol. 843:77–128.
2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Coan PM, Vaughan OR, Sekita Y, Finn SL,
Burton GJ, Constancia M and Fowden AL: Adaptations in placental
phenotype support fetal growth during undernutrition of pregnant
mice. J Physiol. 588:527–538. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hiura H, Hattori H, Kobayashi N, Okae H,
Chiba H, Miyauchi N, Kitamura A, Kikuchi H, Yoshida H and Arima T:
Genome-wide microRNA expression profiling in placentae from
frozen-thawed blastocyst transfer. Clin Epigenetics. 79:792017.
View Article : Google Scholar
|
40
|
Litzky JF, Deyssenroth MA, Everson TM,
Armstrong DA, Lambertini L, Chen J and Marsit CJ: Placental
imprinting variation associated with assisted reproductive
technologies and subfertility. Epigenetics. 12:653–661. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Abdel-Hamid AAM, Firgany AEL, Mesbah Y and
Soliman MF: Vascular and cellular changes accompany altered
expression of angiopoietins in placenta of non-complicated ART
pregnancies. Exp Mol Pathol. 102:284–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang Y, Cui Y, Zhou Z, Sha J, Li Y and
Liu J: Altered global gene expressions of human placentae subjected
to assisted reproductive technology treatments. Placenta.
31:251–258. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Armstrong DL, McGowen MR, Weckle A,
Pantham P, Caravas J, Agnew D, Benirschke K, Savage-Rumbaugh S,
Nevo E, Kim CJ, et al: The core transcriptome of mammalian
placentas and the divergence of expression with placental shape.
Placenta. 57:71–78. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Faas MM and De Vos P: Innate immune cells
in the placental bed in healthy pregnancy and preeclampsia.
Placenta. 69:125–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
de Waal E, Vrooman LA, Fischer E, Ord T,
Mainigi MA, Coutifaris C, Schultz RM and Bartolomei MS: The
cumulative effect of assisted reproduction procedures on placental
development and epigenetic perturbations in a mouse model. Hum Mol
Genet. 24:6975–6985. 2015.PubMed/NCBI
|
46
|
Arnold DR, Gaspar RC, da Rocha CV,
Sangalli JR, de Bem THC, Corrêa CAP, Penteado JCT, Meirelles FV and
Lopes FL: Nuclear transfer alters placental gene expression and
associated histone modifications of the placental-specific
imprinted gene pleckstrin homology-like domain, family A, member 2
(PHLDA2) in cattle. Reprod Fertil Dev. 29:458–467. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Canel NG, Suvá M, Bevacqua RJ, Arias ME,
Felmer R and Salamone DF: Improved embryo development using high
cysteamine concentration during IVM and sperm co-culture with COCs
previous to ICSI in bovine. Theriogenology. 117:26–33. 2018.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Tšuiko O, Catteeuw M, Zamani Esteki M,
Destouni A, Bogado Pascottini O, Besenfelder U, Havlicek V, Smits
K, Kurg A, Salumets A, et al: Genome stability of bovine in
vivo-conceived cleavage-stage embryos is higher compared to in
vitro-produced embryos. Hum Reprod. 32:2348–2357. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Grazul-Bilska AT, Johnson ML, Borowicz PP,
Baranko L, Redmer DA and Reynolds LP: Placental development during
early pregnancy in sheep: Effects of embryo origin on fetal and
placental growth and global methylation. Theriogenology. 79:94–102.
2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fritz R, Kohan-Ghadr HR, Bolnick JM,
Bolnick AD, Kilburn BA, Diamond MP, Drewlo S and Armant DR:
Noninvasive detection of trophoblast protein signatures linked to
early pregnancy loss using trophoblast retrieval and isolation from
the cervix (TRIC). Fertil Steril. 104:339–346.e4. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lafuste P, Robert B, Mondon F, Danan JL,
Rossi B, Duc-Goiran P, Mignot TM, Nunez EA, Benassayag C and Ferré
F: Alpha-fetoprotein gene expression in early and full-term human
trophoblast. Placenta. 23:600–612. 2002. View Article : Google Scholar : PubMed/NCBI
|
52
|
Hughes AE, Sovio U, Gaccioli F, Cook E,
Charnock-Jones DS and Smith GCS: The association between first
trimester AFP to PAPP-A ratio and placentally-related adverse
pregnancy outcome. Placenta. 81:25–31. 2019. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tancrède S, Bujold E, Giguère Y, Renald
MH, Girouard J and Forest JC: Mid-trimester maternal serum AFP and
hCG as markers of preterm and term adverse pregnancy outcomes. J
Obstet Gynaecol Can. 37:111–116. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Melincovici CS, Boşca AB, Şuşman S,
Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM:
Vascular endothelial growth factor (VEGF)-key factor in normal and
pathological angiogenesis. Rom J Morphol Embryol. 59:455–467.
2018.PubMed/NCBI
|
55
|
Oliveira CM, Rodrigues MN and Miglino MA:
Iron transportation across the placenta. An Acad Bras Cienc.
84:1115–1120. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Herr F, Baal N and Zygmunt M: Studies of
placental vasculogenesis: A way to understand pregnancy pathology?
Z Geburtshilfe Neonatol. 213:96–100. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Matsumura T, Nakamura-Ishizu A, Takaoka K,
Maki H, Muddineni SS, Wang CQ, Suzushima H, Kawakita M, Asou N,
Matsuoka M, et al: TUBB1 dysfunction in inherited thrombocytopenia
causes genome instability. Br J Haematol. 185:888–902. 2019.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Gharesi-Fard B, Zolghadri J and
Kamali-Sarvestani E: Proteome differences in the first- and
third-trimester human placentas. Reprod Sci. 22:462–468. 2015.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Huebner H, Knoerr B, Betzler A, Hartner A,
Kehl S, Baier F, Wachter DL, Strick R, Beckmann MW, Fahlbusch FB
and Ruebner M: Detyrosinated tubulin is decreased in fetal vessels
of preeclampsia placentas. Placenta. 62:58–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Adebambo OA, Ray PD, Shea D and Fry RC:
Toxicological responses of environmental mixtures: Environmental
metal mixtures display synergistic induction of metal-responsive
and oxidative stress genes in placental cells. Toxicol Appl
Pharmacol. 289:534–541. 2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
Liu C, He X, Hong X, Kang F, Chen S, Wang
Q, Chen X, Hu D and Sun Q: Suppression of placental metallothionein
1 and zinc transporter 1 mRNA expressions contributes to fetal
heart malformations caused by maternal zinc deficiency. Cardiovasc
Toxicol. 14:329–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Börzsönyi B, Demendi C, Rigó J Jr,
Szentpéteri I, Rab A and Joó JG: The regulation of apoptosis in
intrauterine growth restriction: A study of Bcl-2 and Bax gene
expression in human placenta. J Matern Fetal Neonatal Med.
26:347–350. 2013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wierzba W, Tyszko P, Kanecki K and Pinkas
J: Proliferation and apoptosis of human placental cells exposed to
aromatic hydrocarbons. Ginekol Pol. 88:686–691. 2017. View Article : Google Scholar : PubMed/NCBI
|
64
|
Khera A, Vanderlelie JJ, Holland O and
Perkins AV: Overexpression of endogenous anti-oxidants with
selenium supplementation protects trophoblast cells from reactive
oxygen species-induced apoptosis in a Bcl-2-dependent manner. Biol
Trace Elem Res. 177:394–403. 2017. View Article : Google Scholar : PubMed/NCBI
|
65
|
Demendi C, Börzsönyi B, Végh V, Nagy ZB,
Rigó J Jr, Pajor A and Joó JG: Gene expression patterns of the
Bcl-2 and Bax genes in preterm birth. Acta Obstet Gynecol Scand.
91:1212–1217. 2012. View Article : Google Scholar : PubMed/NCBI
|
66
|
Bainbridge SA, Minhas A, Whiteley KJ, Qu
D, Sled JG, Kingdom JC and Adamson SL: Effects of reduced Gcm1
expression on trophoblast morphology, fetoplacental vascularity,
and pregnancy outcomes in mice. Hypertension. 59:732–739. 2012.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Chiu YH, Yang MR, Wang LJ, Chen MH, Chang
GD and Chen H: New insights into the regulation of placental growth
factor gene expression by the transcription factors GCM1 and DLX3
in human placenta. J Biol Chem. 293:9801–9811. 2018. View Article : Google Scholar : PubMed/NCBI
|
68
|
Kosovic I, Prusac IK, Berkovic A, Marusic
J, Mimica M and Tomas SZ: Expression of EGF, EGFR, and
proliferation in placentas from pregnancies complicated with
preeclampsia. Hypertens Pregnancy. 36:16–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
69
|
Zhao ZM and Jiang J: Lowly expressed
EGFR-AS1 promotes the progression of preeclampsia by inhibiting the
EGFR-JAK/STAT signaling pathway. Eur Rev Med Pharmacol Sci.
22:6190–6197. 2018.PubMed/NCBI
|
70
|
Zhang HJ, Siu MK, Jiang LL, Mak VC, Ngan
HY and Cheung AN: Overexpression of the Parkinson disease protein
DJ-1 and its regulator PTEN in gestational trophoblastic disease.
Int J Gynecol Pathol. 29:468–475. 2010. View Article : Google Scholar : PubMed/NCBI
|
71
|
Xiao J, Tao T, Yin Y, Zhao L, Yang L and
Hu L: miR-144 may regulate the proliferation, migration and
invasion of trophoblastic cells through targeting PTEN in
preeclampsia. Biomed Pharmacother. 94:341–353. 2017. View Article : Google Scholar : PubMed/NCBI
|
72
|
Liu J, Zhao H, Zhou F, Huang Y, Chen X,
Wang S, Hao J, Xu X, He B and Wang J: Human-specific LAIR2
contributes to the high invasiveness of human extravillous
trophoblast cells. Reprod Biol. 19:287–292. 2019. View Article : Google Scholar : PubMed/NCBI
|
73
|
Founds SA, Fallert-Junecko B, Reinhart TA
and Parks WT: LAIR2-expressing extravillous trophoblasts associate
with maternal spiral arterioles undergoing physiologic conversion.
Placenta. 34:248–255. 2013. View Article : Google Scholar : PubMed/NCBI
|
74
|
Weinerman R, Ord T, Bartolomei MS,
Coutifaris C and Mainigi M: The superovulated environment,
independent of embryo vitrification, results in low birthweight in
a mouse model. Biol Reprod. 97:133–142. 2017. View Article : Google Scholar : PubMed/NCBI
|
75
|
Tan K, Zhang Z, Miao K, Yu Y, Sui L, Tian
J and An L: Dynamic integrated analysis of DNA methylation and gene
expression profiles in in vivo and in vitro fertilized mouse
post-implantation extraembryonic and placental tissues. Mol Hum
Reprod. 22:485–498. 2016. View Article : Google Scholar : PubMed/NCBI
|
76
|
Bloise E, Lin W, Liu X, Simbulan R, Kolahi
KS, Petraglia F, Maltepe E, Donjacour A and Rinaudo P: Impaired
placental nutrient transport in mice generated by in vitro
fertilization. Endocrinology. 153:3457–3467. 2012. View Article : Google Scholar : PubMed/NCBI
|
77
|
Yanaihara A, Hatakeyama S, Ohgi S,
Motomura K, Taniguchi R, Hirano A, Takenaka S and Yanaihara T:
Difference in the size of the placenta and umbilical cord between
women with natural pregnancy and those with IVF pregnancy. J Assist
Reprod Genet. 35:431–434. 2018. View Article : Google Scholar : PubMed/NCBI
|
78
|
Kingdom JC, Audette MC, Hobson SR, Windrim
RC and Morgen E: A placenta clinic approach to the diagnosis and
management of fetal growth restriction. Am J Obstet Gynecol. 218
(Suppl 2):S803–S817. 2018. View Article : Google Scholar : PubMed/NCBI
|
79
|
Kawwass JF and Badell ML: Maternal and
fetal risk associated with assisted reproductive technology. Obstet
Gynecol. 132:763–772. 2018. View Article : Google Scholar : PubMed/NCBI
|