1
|
Krausz C and Riera-Escamilla A: Genetics
of male infertility. Nat Rev Urol. 15:369–384. 2018. View Article : Google Scholar
|
2
|
Tournaye H, Krausz C and Oates RD: Novel
concepts in the aetiology of male reproductive impairment. Lancet
Diabetes Endocrinol. 5:544–553. 2017. View Article : Google Scholar
|
3
|
Xavier MJ, Salas-Huetos A, Oud MS, Aston
KI and Veltman JA: Disease gene discovery in male infertility:
Past, present and future. Hum Genet. 140:7–19. 2021. View Article : Google Scholar
|
4
|
Jamsai D and O'Bryan MK: Mouse models in
male fertility research. Asian J Androl. 13:139–151. 2011.
View Article : Google Scholar
|
5
|
Cardona Barberán A, Boel A, Vanden
Meerschaut F, Stoop D and Heindryckx B: Diagnosis and treatment of
male infertility-related fertilization failure. J Clin Med.
9:38992020. View Article : Google Scholar
|
6
|
Georgadaki K, Khoury N, Spandidos DA and
Zoumpourlis V: The molecular basis of fertilization (Review). Int J
Mol Med. 38:979–986. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tüttelmann F, Simoni M, Kliesch S, Ledig
S, Dworniczak B, Wieacker P and Röpke A: Copy number variants in
patients with severe oligozoospermia and sertoli-cell-only
syndrome. PLoS One. 6:e194262011. View Article : Google Scholar
|
8
|
Alhathal N, Maddirevula S, Coskun S, Alali
H, Assoum M, Morris T, Deek HA, Hamed SA, Alsuhaibani S, Mirdawi A,
et al: A genomics approach to male infertility. Genet Med.
22:1967–1975. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Oud MS, Volozonoka L, Smits RM, Vissers
LELM, Ramos L and Veltman JA: A systematic review and standardized
clinical validity assessment of male infertility genes. Hum Reprod
Oxf Engl. 34:932–941. 2019. View Article : Google Scholar
|
10
|
Houston BJ, Riera-Escamilla A, Wyrwoll MJ,
Salas-Huetos A, Xavier MJ, Nagirnaja L, Friedrich C, Conrad DF,
Aston KI, Krausz C, et al: A systematic review of the validated
monogenic causes of human male infertility: 2020 update and a
discussion of emerging gene-disease relationships. Hum Reprod
Update. 28:15–29. 2022. View Article : Google Scholar
|
11
|
Kadiyska T, Tourtourikov I, Petrov A,
Chavoushian A, Antalavicheva M, König EM, Klopocki E, Vessela N and
Stanislavov R: Interstitial deletion of 5q22.2q23.1 including
APC and TSSK1B in a patient with adenomatous
polyposis and asthenoteratozoospermia. Mol Syndromol. 9:235–240.
2019. View Article : Google Scholar
|
12
|
Bononi A, Agnoletto C, De Marchi E, Marchi
S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F,
Rimessi A and Pinton P: Protein kinases and phosphatases in the
control of cell fate. Enzyme Res. 2011:3290982011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ardito F, Giuliani M, Perrone D, Troiano G
and Lo Muzio L: The crucial role of protein phosphorylation in cell
signaling and its use as targeted therapy (Review). Int J Mol Med.
40:271–280. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu B, Hao Z, Jha KN, Zhang Z, Urekar C,
Digilio L, Pulido S, Strauss JF III, Flickinger CJ and Herr JC:
Targeted deletion of Tssk1 and 2 causes male infertility due to
haploinsufficiency. Dev Biol. 319:211–222. 2008. View Article : Google Scholar
|
15
|
Salicioni AM, Gervasi MG, Sosnik J,
Tourzani DA, Nayyab S, Caraballo DA and Visconti PE:
Testis-specific serine kinase protein family in male fertility and
as targets for non-hormonal male contraception†. Biol Reprod.
103:264–274. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Spiridonov NA, Wong L, Zerfas PM, Starost
MF, Pack SD, Paweletz CP and Johnson GR: Identification and
characterization of SSTK, a serine/threonine protein kinase
essential for male fertility. Mol Cell Biol. 25:4250–4261. 2005.
View Article : Google Scholar
|
17
|
Shang P, Baarends WM, Hoogerbrugge J, Ooms
MP, van Cappellen WA, de Jong AA, Dohle GR, van Eenennaam H, Gossen
JA and Grootegoed JA: Functional transformation of the chromatoid
body in mouse spermatids requires testis-specific serine/threonine
kinases. J Cell Sci. 123:331–339. 2010. View Article : Google Scholar
|
18
|
Bielke W, Blaschke RJ, Miescher GC,
Zürcher G, Andres AC and Ziemiecki A: Characterization of a novel
murine testis-specific serine/threonine kinase. Gene. 139:235–239.
1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kueng P, Nikolova Z, Djonov V, Hemphill A,
Rohrbach V, Boehlen D, Zuercher G, Andres AC and Ziemiecki A: A
novel family of serine/threonine kinases participating in
spermiogenesis. J Cell Biol. 139:1851–1859. 1997. View Article : Google Scholar
|
20
|
Shang P, Hoogerbrugge J, Baarends WM and
Grootegoed JA: Evolution of testis-specific kinases TSSK1B and
TSSK2 in primates. Andrology. 1:160–168. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sharpe R: Regulation of spermatogenesis.
The Physuiology of Reproduction. Knobil E and Neil JD: Raven Press;
New York, NY: pp. 1363–434. 1994
|
22
|
Nayak S, Galili N and Buck CA:
Immunohistochemical analysis of the expression of two
serine-threonine kinases in the maturing mouse testis. Mech Dev.
74:171–174. 1998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yokota S: Historical survey on chromatoid
body research. Acta Histochem Cytochem. 41:65–82. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kotaja N, Bhattacharyya SN, Jaskiewicz L,
Kimmins S, Parvinen M, Filipowicz W and Sassone-Corsi P: The
chromatoid body of male germ cells: Similarity with processing
bodies and presence of Dicer and microRNA pathway components. Proc
Natl Acad Sci USA. 103:2647–2652. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Grivna ST, Pyhtila B and Lin H: MIWI
associates with translational machinery and PIWI-interacting RNAs
(piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci.
103:13415–13420. 2006. View Article : Google Scholar
|
26
|
Varmuza S, Jurisicova A, Okano K, Hudson
J, Boekelheide K and Shipp EB: Spermiogenesis is impaired in mice
bearing a targeted mutation in the protein phosphatase 1cgamma
gene. Dev Biol. 205:98–110. 1999. View Article : Google Scholar
|
27
|
MacLeod G, Shang P, Booth GT, Mastropaolo
LA, Manafpoursakha N, Vogl AW and Varmuza S: PPP1CC2 can form a
kinase/phosphatase complex with the testis-specific proteins TSSK1
and TSKS in the mouse testis. Reprod Camb Engl. 147:1–12. 2014.
View Article : Google Scholar
|
28
|
Forgione N, Vogl AW and Varmuza S: Loss of
protein phosphatase 1c(gamma) (PPP1CC) leads to impaired
spermatogenesis associated with defects in chromatin condensation
and acrosome development: An ultrastructural analysis.
Reproduction. 139:1021–1029. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
World Health Organization (WHO), . WHO
laboratory manual for the examination of human semen and
sperm-cervical mucus interaction. 4th edition. Published on behalf
of the World Health Organization (by). Cambridge University Press;
Cambridge: pp. p1281999
|
30
|
Krausz C, Hoefsloot L, Simoni M and
Tüttelmann F; European Academy of Andrology and European Molecular
Genetics Quality Network, : EAA/EMQN best practice guidelines for
molecular diagnosis of Y-chromosomal microdeletions:
State-of-the-art 2013. Andrology. 2:5–19. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
McLaren W, Gil L, Hunt SE, Riat HS,
Ritchie GR, Thormann A, Flicek P and Cunningham F: The ensembl
variant effect predictor. Genome Biol. 17:1222016. View Article : Google Scholar
|
32
|
Richards S, Aziz N, Bale S, Bick D, Das S,
Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al:
Standards and guidelines for the interpretation of sequence
variants: A joint consensus recommendation of the American college
of medical genetics and genomics and the association for molecular
pathology. Genet Med. 17:405–424. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Karczewski KJ, Francioli LC, Tiao G,
Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A,
Birnbaum DP, et al: The mutational constraint spectrum quantified
from variation in 141,456 humans. Nature. 581:434–443. 2020.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Jumper J, Evans R, Pritzel A, Green T,
Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
Potapenko A, et al: Highly accurate protein structure prediction
with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Callaway E: ‘It will change everything’:
DeepMind's AI makes gigantic leap in solving protein structures.
Nature. 588:203–204. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jumper J, Evans R, Pritzel A, Green T,
Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
Potapenko A, et al: Applying and improving AlphaFold at CASP14.
Proteins Struct Funct Bioinforma. 89:1711–1721. 2021. View Article : Google Scholar
|
37
|
Li Y, Sosnik J, Brassard L, Reese M,
Spiridonov NA, Bates TC, Johnson GR, Anguita J, Visconti PE and
Salicioni AM: Expression and localization of five members of the
testis-specific serine kinase (Tssk) family in mouse and human
sperm and testis. Mol Hum Reprod. 17:42–56. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dorman E and Bishai D: Demand for male
contraception. Expert Rev Pharmacoecon Outcomes Res. 12:605–613.
2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Abbe CR, Page ST and Thirumalai A: Male
contraception. Yale J Biol Med. 93:603–613. 2020.PubMed/NCBI
|
40
|
Gava G and Meriggiola MC: Update on male
hormonal contraception. Ther Adv Endocrinol Metab.
10:20420188198348462019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hawkinson JE, Sinville R, Mudaliar D,
Shetty J, Ward T, Herr JC and Georg GI: Potent pyrimidine and
pyrrolopyrimidine inhibitors of testis-specific serine/threonine
kinase 2 (TSSK2). ChemMedChem. 12:1857–1865. 2017. View Article : Google Scholar : PubMed/NCBI
|