Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review)
- Authors:
- Wan-Li Duan
- Xue-Jie Wang
- Ya-Ping Ma
- Zhi-Mei Sheng
- Hao Dong
- Li-Ying Zhang
- Bao-Gang Zhang
- Mao-Tao He
-
Affiliations: Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China - Published online on: January 22, 2024 https://doi.org/10.3892/mmr.2024.13170
- Article Number: 46
-
Copyright: © Duan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Saini V, Guada L and Yavagal DR: Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 97 (20 Suppl 2):S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, et al: Heart disease and stroke statistics-2018 update: A report from the American heart association. Circulation. 137:e67–e492. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang JL, Mukda S and Chen SD: Diverse roles of mitochondria in ischemic stroke. Redox Biol. 16:263–275. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Chen J, Wu L, Lee H, Shi J, Zhang M, Ma Y, He X, Zhu Z, Yan F, et al: A clinically relevant model of focal embolic cerebral ischemia by thrombus and thrombolysis in rhesus monkeys. Nat Protoc. 17:2054–2084. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Chen L, Yao ZM, Sun XR, Tong XH and Dong SY: The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother. 162:1146712023. View Article : Google Scholar : PubMed/NCBI | |
An H, Zhou B and Ji X: Mitochondrial quality control in acute ischemic stroke. J Cereb Blood Flow Metab. 41:3157–3170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Monsour M and Borlongan CV: The central role of peripheral inflammation in ischemic stroke. J Cereb Blood Flow Metab. 43:622–641. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ludhiadch A, Sharma R, Muriki A and Munshi A: Role of calcium homeostasis in ischemic stroke: A review. CNS Neurol Disord Drug Targets. 21:52–61. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Liu J, Piao H, Zhu Z, Wei R and Liu K: ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 13:10392412022. View Article : Google Scholar : PubMed/NCBI | |
Chamorro Á, Dirnagl U, Urra X and Planas AM: Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15:869–881. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lugovaya AV, Emanuel TS, Kalinina NM, Mitreikin VP, Artemova AV and Makienko AA: The role of autophagy in the regulation of neuroinflammation in acute ischemic stroke (review of literature). Klin Lab Diagn. 67:391–398. 2022.PubMed/NCBI | |
Jurcau A and Simion A: Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci. 23:142021. View Article : Google Scholar : PubMed/NCBI | |
Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jia S, Yang H, Huang F and Fan W: Systemic inflammation, neuroinflammation and perioperative neurocognitive disorders. Inflamm Res. 72:1895–1907. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vringer E and Tait SWG: Mitochondria and cell death-associated inflammation. Cell Death Differ. 30:304–312. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Li X, Wang J and Wang H: The role of the effects of autophagy on NLRP3 inflammasome in inflammatory nervous system diseases. Front Cell Dev Biol. 9:6574782021. View Article : Google Scholar : PubMed/NCBI | |
Fu J and Wu H: Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 41:301–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD and Latz E: Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 17:588–606. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Xu W and Zhou R: NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 18:2114–2127. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vajjhala PR, Mirams RE and Hill JM: Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 287:41732–31743. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI | |
Abais JM, Xia M, Zhang Y, Boini KM and Li PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar : PubMed/NCBI | |
Toldo S and Abbate A: The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 15:203–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang H, Kouadir M, Song H and Shi F: Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 10:1282019. View Article : Google Scholar : PubMed/NCBI | |
Nunes PR, Mattioli SV and Sandrim VC: NLRP3 activation and its relationship to endothelial dysfunction and oxidative stress: Implications for preeclampsia and pharmacological interventions. Cells. 10:28282021. View Article : Google Scholar : PubMed/NCBI | |
Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu J and Núñez G: The NLRP3 inflammasome: Activation and regulation. Trends Biochem Sci. 48:331–344. 2023. View Article : Google Scholar : PubMed/NCBI | |
Frank D and Vince JE: Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 26:99–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang C and Ruan J: Mechanistic insights into gasdermin pore formation and regulation in pyroptosis. J Mol Biol. 434:1672972022. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Zheng Y, Huang Y, Tang D, Kang R and Chen R: The versatile gasdermin family: Their function and roles in diseases. Front Immunol. 12:7515332021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Long J, Sun Y, Liu S, Yang S, Chen C, Zhang Z, Chu S, Yang Y, Pei G, Lin M, et al: Targeting pyroptosis as a preventive and therapeutic approach for stroke. Cell Death Discov. 9:1552023. View Article : Google Scholar : PubMed/NCBI | |
Franke M, Bieber M, Kraft P, Weber ANR, Stoll G and Schuhmann MK: The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun. 92:223–233. 2021. View Article : Google Scholar : PubMed/NCBI | |
Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW and Dietrich WD: Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab. 29:534–544. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H and Yang S: NLRP3 inflammasome activation: A therapeutic target for cerebral ischemia-reperfusion injury. Front Mol Neurosci. 15:8474402022. View Article : Google Scholar : PubMed/NCBI | |
Ismael S, Zhao L, Nasoohi S and Ishrat T: Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep. 8:59712018. View Article : Google Scholar : PubMed/NCBI | |
Hong P, Li FX, Gu RN, Fang YY, Lai LY, Wang YW, Tao T, Xu SY, You ZJ and Zhang HF: Inhibition of NLRP3 inflammasome ameliorates cerebral ischemia-reperfusion injury in diabetic mice. Neural Plast. 2018:91635212018. View Article : Google Scholar : PubMed/NCBI | |
Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S, Filosa J, Fagan SC and Ergul A: NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res. 142:237–250. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Meng Y, Han X and Zhang W: ADAM8 activates NLRP3 inflammasome to promote cerebral ischemia-reperfusion injury. J Healthc Eng. 2021:30974322021. View Article : Google Scholar : PubMed/NCBI | |
Bellut M, Papp L, Bieber M, Kraft P, Stoll G and Schuhmann MK: NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis. 13:202021. View Article : Google Scholar : PubMed/NCBI | |
Ahmad M, Dar NJ, Bhat ZS, Hussain A, Shah A, Liu H and Graham SH: Inflammation in ischemic stroke: Mechanisms, consequences and possible drug targets. CNS Neurol Disord Drug Targets. 13:1378–1396. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F and Zhang Y: Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol. 11:11197732023. View Article : Google Scholar : PubMed/NCBI | |
Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, Bitto A, Crea G, Pisani A, Squadrito F, et al: ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev. 2016:21830262016. View Article : Google Scholar : PubMed/NCBI | |
Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T and Rouis M: NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 4:296–307. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mohamed IN, Ishrat T, Fagan SC and El-Remessy AB: Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxid Redox Signal. 22:1188–1206. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mohamed IN, Li L, Ismael S, Ishrat T and El-Remessy AB: Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World J Diabetes. 12:1979–1999. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li J, Li S, Li Y, Wang X, Liu B, Fu Q and Ma S: Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol. 286:53–63. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A, El-Remessy AB and Fagan SC: Thioredoxin-interacting protein: A novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol. 51:766–778. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brand MD and Esteves TC: Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2:85–93. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hass DT and Barnstable CJ: Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res. 83:1009412021. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, He MT, Zhang XP, Jing L and Zhang JZ: Uncoupling protein 2 deficiency enhances NLRP3 inflammasome activation following hyperglycemia-induced exacerbation of cerebral ischemia and reperfusion damage in vitro and in vivo. Neurochem Res. 46:1359–1371. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Zhou J, Li W, Zhang L, Wang X and Liu Q: Casticin protected against neuronal injury and inhibited the TLR4/NF-κB pathway after middle cerebral artery occlusion in rats. Pharmacol Res Perspect. 9:e007522021. View Article : Google Scholar : PubMed/NCBI | |
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Liu M, Yao W, Du K, He M, Jin X, Jiao L, Ma G, Wei B and Wei M: Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res. 63:e18012302019. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Cai H, Fang Q, Liu D, Zhan M, Chen L and Du J: Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages. Eur J Pharmacol. 960:1761492023. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Bu J, Yu L, Chen J and Liu H: Nobiletin improves propofol-induced neuroprotection via regulating Akt/mTOR and TLR 4/NF-κB signaling in ischemic brain injury in rats. Biomed Pharmacother. 91:494–503. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shukla V, Shakya AK, Perez-Pinzon MA and Dave KR: Cerebral ischemic damage in diabetes: An inflammatory perspective. J Neuroinflammation. 14:212017. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Liu F and Guo Q: Quercetin attenuates hypoxia-ischemia induced brain injury in neonatal rats by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol. 74:1057042019. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI | |
Lv S, Wang H and Li X: The role of the interplay between autophagy and NLRP3 inflammasome in metabolic disorders. Front Cell Dev Biol. 9:6341182021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wu D and Wang H: Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol Res. 68:335–345. 2019.PubMed/NCBI | |
Zhu Y, Yin Q, Wei D, Yang Z, Du Y and Ma Y: Autophagy in male reproduction. Syst Biol Reprod Med. 65:265–272. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM and Santambrogio L: Microautophagy of cytosolic proteins by late endosomes. Dev Cell. 20:131–139. 2011. View Article : Google Scholar : PubMed/NCBI | |
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kaushik S and Cuervo AM: Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends Cell Biol. 22:407–417. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ueno T and Komatsu M: Autophagy in the liver: Functions in health and disease. Nat Rev Gastroenterol Hepatol. 14:170–184. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tooze SA and Yoshimori T: The origin of the autophagosomal membrane. Nat Cell Biol. 12:831–835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N, Yoshimori T and Ohsumi Y: The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI | |
Glick D, Barth S and Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
McCarty MF: Nutraceutical and dietary strategies for up-regulating macroautophagy. Int J Mol Sci. 23:20542022. View Article : Google Scholar : PubMed/NCBI | |
He Q, Li Z, Meng C, Wu J, Zhao Y and Zhao J: Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats. Cells. 8:8972019. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, Wang Y, Long Z and He G: Interaction between autophagy and the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai). 51:1087–1095. 2019. View Article : Google Scholar : PubMed/NCBI | |
Biasizzo M and Kopitar-Jerala N: Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 11:5918032020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, et al: Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 421:384–388. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Wu M, Zhang Z, Yan C, Ma Z, He S, Yuan W, Pu K and Wang Q: Electroacupuncture attenuated cerebral ischemic injury and neuroinflammation through α7nAChR-mediated inhibition of NLRP3 inflammasome in stroke rats. Mol Med. 25:222019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Chen M, Lin K, Xiang X, Zheng Y and Zhu S: Inhibiting caspase-12 mediated inflammasome activation protects against oxygen-glucose deprivation injury in primary astrocytes. Int J Med Sci. 17:1936–1945. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Zhan J, Jiang J and Ren Y: Upregulation of neuronal cylindromatosis expression is essential for electroacupuncture-mediated alleviation of neuroinflammatory injury by regulating microglial polarization in rats subjected to focal cerebral ischemia/reperfusion. J Inflamm Res. 14:2061–2078. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A and Morita R: Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 6:73602015. View Article : Google Scholar : PubMed/NCBI | |
Franchi L, Warner N, Viani K and Nuñez G: Function of nod-like receptors in microbial recognition and host defense. Immunol Rev. 227:106–128. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Jiang Q: Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol. 14:11283582023. View Article : Google Scholar : PubMed/NCBI | |
Dinarello CA: Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 27:519–550. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Peng M, Xu P, Huang F, Xie Y, Li J, Hong Y, Guo H, Liu Q and Zhu W: Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation. 17:3302020. View Article : Google Scholar : PubMed/NCBI | |
Lyu Z, Chan Y, Li Q, Zhang Q, Liu K, Xiang J, Li X, Cai D, Li Y, Wang B and Yu Z: Destructive effects of pyroptosis on homeostasis of neuron survival associated with the dysfunctional BBB-glymphatic system and amyloid-beta accumulation after cerebral ischemia/reperfusion in rats. Neural Plast. 2021:45043632021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zheng J, Xu Y, Cao W, Wang J, Wang B, Zhao L, Zhang X and Liao W: Enriched environment attenuates pyroptosis to improve functional recovery after cerebral ischemia/reperfusion injury. Front Aging Neurosci. 13:7176442021. View Article : Google Scholar : PubMed/NCBI | |
Pang YQ, Yang J, Jia CM, Zhang R and Pang Q: Hypoxic preconditioning reduces NLRP3 inflammasome expression and protects against cerebral ischemia/reperfusion injury. Neural Regen Res. 17:395–400. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Chen J, Liu T, Dai W, Zhou Z, Chen L and Xie Y: Protective effects of remimazolam on cerebral ischemia/reperfusion injury in rats by inhibiting of NLRP3 inflammasome-dependent pyroptosis. Drug Des Devel Ther. 16:413–423. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Fang BY, Meng XB, Zhang SX, Wang H, Gao G, Liu F, Wu Y, Hu J, Sun GB and Sun XB: Folium Ginkgo extract and tetramethylpyrazine sodium chloride injection (Xingxiong injection) protects against focal cerebral ischaemia/reperfusion injury via activating the Akt/Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Pharm Biol. 60:195–205. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mo ZT, Zheng J and Liao YL: Icariin inhibits the expression of IL-1β, IL-6 and TNF-α induced by OGD/R through the IRE1/XBP1s pathway in microglia. Pharm Biol. 59:1473–1479. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shang S, Sun F, Zhu Y, Yu J, Yu L, Shao W, Wang Z and Yi X: Sevoflurane preconditioning improves neuroinflammation in cerebral ischemia/reperfusion induced rats through ROS-NLRP3 pathway. Neurosci Lett. 801:1371642023. View Article : Google Scholar : PubMed/NCBI | |
Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin M, Ma X, Zhou K, Qi J, Yu B and Kou J: Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci. 17:14182016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang R, Xue L, Yang Y and Zhi F: Astilbin protects against cerebral ischaemia/reperfusion injury by inhibiting cellular apoptosis and ROS-NLRP3 inflammasome axis activation. Int Immunopharmacol. 84:1065712020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S and Zhao D: Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother. 127:1101512020. View Article : Google Scholar : PubMed/NCBI | |
Amruta N and Bix G: ATN-161 ameliorates ischemia/reperfusion-induced oxidative stress, fibro-inflammation, mitochondrial damage, and apoptosis-mediated tight junction disruption in bEnd.3 cells. Inflammation. 44:2377–2394. 2021. View Article : Google Scholar : PubMed/NCBI | |
He J, Wu H, Zhou Y and Zheng C: Tomentosin inhibit cerebral ischemia/reperfusion induced inflammatory response via TLR4/NLRP3 signalling pathway-in vivo and in vitro studies. Biomed Pharmacother. 131:1106972020. View Article : Google Scholar : PubMed/NCBI | |
Sapkota A and Choi JW: Oleanolic acid provides neuroprotection against ischemic stroke through the inhibition of microglial activation and NLRP3 inflammasome activation. Biomol Ther (Seoul). 30:55–63. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cui HX, Chen JH, Li JW, Cheng FR and Yuan K: Protection of anthocyanin from Myrica rubra against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-κB and NLRP3 pathways. Molecules. 23:17882018. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X and Gu L: Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway. Front Cell Neurosci. 13:5532019. View Article : Google Scholar : PubMed/NCBI | |
Dai M, Wu L, Yu K, Xu R, Wei Y, Chinnathambi A, Alahmadi TA and Zhou M: D-Carvone inhibit cerebral ischemia/reperfusion induced inflammatory response TLR4/NLRP3 signaling pathway. Biomed Pharmacother. 132:1108702020. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L, Ni H, Zhuge Q and Yang S: Melatonin enhances the therapeutic effect of plasma exosomes against cerebral ischemia-induced pyroptosis through the TLR4/NF-κB pathway. Front Neurosci. 14:8482020. View Article : Google Scholar : PubMed/NCBI | |
Han D, Wang J, Wen L, Sun M, Liu H and Gao Y: Vinpocetine attenuates ischemic stroke through inhibiting NLRP3 inflammasome expression in mice. J Cardiovasc Pharmacol. 77:208–216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Ma W, Zang CH, Wang GD, Zhang SJ, Wu HJ, Zhu KW, Xiang XL, Li CY, Liu KP, et al: Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. Ann Transl Med. 9:16942021. View Article : Google Scholar : PubMed/NCBI | |
Ran Y, Su W, Gao F, Ding Z, Yang S, Ye L, Chen X, Tian G, Xi J and Liu Z: Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition. Oxid Med Cell Longev. 2021:15521272021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Hong Z, Lin Y, Shen W, Yang Y, Zuo Z and Hu X: Exercise pretreatment alleviates neuroinflammation and oxidative stress by TFEB-mediated autophagic flux in mice with ischemic stroke. Exp Neurol. 364:1143802023. View Article : Google Scholar : PubMed/NCBI | |
Zeng Q, Zhou Y, Liang D, He H, Liu X, Zhu R, Zhang M, Luo X, Wang Y and Huang G: Exosomes secreted from bone marrow mesenchymal stem cells attenuate oxygen-glucose deprivation/reoxygenation-induced pyroptosis in PC12 cells by promoting AMPK-dependent autophagic flux. Front Cell Neurosci. 14:1822020. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Yuan Y, Zhang X, Lu Y, Dong N, Jiang X, Xu J and Zheng D: Human umbilical cord mesenchymal stem cell-derived exosomes attenuate oxygen-glucose deprivation/reperfusion-induced microglial pyroptosis by promoting FOXO3a-dependent mitophagy. Oxid Med Cell Longev. 2021:62197152021. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Zhou X, Zhang X, Huang L, Sun Y, Cheng Z, Xu W, Li CG, Zheng Y and Huang M: Pien-Tze-Huang, a Chinese patent formula, attenuates NLRP3 inflammasome-related neuroinflammation by enhancing autophagy via the AMPK/mTOR/ULK1 signaling pathway. Biomed Pharmacother. 141:1118142021. View Article : Google Scholar : PubMed/NCBI | |
Ma C, Wang X, Xu T, Yu X, Zhang S, Liu S, Gao Y, Fan S, Li C, Zhai C, et al: Qingkailing injection ameliorates cerebral ischemia-reperfusion injury and modulates the AMPK/NLRP3 inflammasome signalling pathway. BMC Complement Altern Med. 19:3202019. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Dai Z, Tang W, Liu C and Tang B: Astragaloside IV alleviates cerebral ischemia-reperfusion injury through NLRP3 inflammasome-mediated pyroptosis inhibition via activating Nrf2. Oxid Med Cell Longev. 2021:99255612021. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Li J, Zhou Q, Li S, Xie C, Niu L, Ma J and Li C: Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via α7 nicotinic acetylcholine receptor. Cell Death Discov. 8:542022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang H, Li H, Nan L, Xu W, Lin Y and Chu K: Gualou guizhi granule protects against OGD/R-induced injury by inhibiting cell pyroptosis via the PI3K/Akt signaling pathway. Evid Based Complement Alternat Med. 2021:66135722021.PubMed/NCBI | |
Wang B, Lyu Z, Chan Y, Li Q, Zhang L, Liu K, Li Y and Yu Z: Tongxinluo exerts inhibitory effects on pyroptosis and amyloid-β peptide accumulation after cerebral ischemia/reperfusion in rats. Evid Based Complement Alternat Med. 2021:57886022021.PubMed/NCBI |