Pancreatic stellate cells and the interleukin family: Linking fibrosis and immunity to pancreatic ductal adenocarcinoma (Review)
- Authors:
- Haichao Li
- Donglian Liu
- Kaishu Li
- Yichen Wang
- Gengqiang Zhang
- Ling Qi
- Keping Xie
-
Affiliations: Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China - Published online on: July 5, 2024 https://doi.org/10.3892/mmr.2024.13283
- Article Number: 159
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rahib L, Wehner MR, Matrisian LM and Nead KT: Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open. 4:e2147082021. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Lok V, Ngai CH, Zhang L, Yuan J, Lao XQ, Ng K, Chong C, Zheng ZJ and Wong MCS: Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology. 160:744–754. 2021. View Article : Google Scholar : PubMed/NCBI | |
Infante-Cossio P, Duran-Romero AJ, Castaño-Seiquer A, Martinez-De-Fuentes R and Pereyra-Rodriguez JJ: Estimated projection of oral cavity and oropharyngeal cancer deaths in Spain to 2044. BMC Oral Health. 22:4442022. View Article : Google Scholar : PubMed/NCBI | |
Viale PH: The American cancer society's facts & figures: 2020 Edition. J Adv Pract Oncol. 11:135–136. 2020.PubMed/NCBI | |
Blackford AL, Canto MI, Klein AP, Hruban RH and Goggins M: Recent trends in the incidence and survival of stage 1A pancreatic cancer: A surveillance, epidemiology, and end results analysis. J Natl Cancer Inst. 112:1162–1169. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao K, Xia Y, Yao J, Han X, Lambert L, Zhang T, Tang W, Jin G, Jiang H, Fang X, et al: Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat Med. 29:3033–3043. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W and He J: Cancer incidence and mortality in China, 2016. J Nat Cancer Cent. 2:1–9. 2022. View Article : Google Scholar | |
Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, et al: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 467:1114–1117. 2010. View Article : Google Scholar : PubMed/NCBI | |
Werba G, Weissinger D, Kawaler EA, Zhao E, Kalfakakou D, Dhara S, Wang L, Lim HB, Oh G, Jing X, et al: Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment. Nat Commun. 14:7972023. View Article : Google Scholar : PubMed/NCBI | |
Du W, Xia X, Hu F and Yu J: Extracellular matrix remodeling in the tumor immunity. Front Immunol. 14:13406342024. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Wang Q, Li M, Guo H, Liu W, Wang F, Tian X and Yang Y: Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine. 66:1033152021. View Article : Google Scholar : PubMed/NCBI | |
Storz P and Crawford H: Carcinogenesis of pancreatic ductal adenocarcinoma. Gastroenterology. 158:2072–2081. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, You L, Dai M and Zhao Y: Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. Am J Cancer Res. 10:1937–1953. 2020.PubMed/NCBI | |
Shi C, Washington MK, Chaturvedi R, Drosos Y, Revetta FL, Weaver CJ, Buzhardt E, Yull FE, Blackwell TS, Sosa-Pineda B, et al: Fibrogenesis in pancreatic cancer is a dynamic process regulated by macrophage-stellate cell interaction. Lab Invest. 94:409–421. 2014. View Article : Google Scholar : PubMed/NCBI | |
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA and Kobold S: Interleukins in cancer: From biology to therapy. Nature Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kartsonaki C, Pang Y, Millwood I, Yang L, Guo Y, Walters R, Lv J, Hill M, Yu C, Chen Y, et al: Circulating proteins and risk of pancreatic cancer: A case-subcohort study among Chinese adults. Int J Epidemiol. 51:817–829. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nie YJ, Wu SH, Xuan YH and Yan G: Role of IL-17 family cytokines in the progression of IPF from inflammation to fibrosis. Mil Med Res. 9:212022.PubMed/NCBI | |
Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC and Wilson JS: Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut. 43:128–133. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Wang H, Zhou J, Qiu S, Cai T, Li H, Shen Z, Hu Y, Ding B, Luo M, et al: Vitamin A and its multi-effects on pancreas: Recent advances and prospects. Front Endocrinol (Lausanne). 12:6209412021. View Article : Google Scholar : PubMed/NCBI | |
Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, et al: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3:346–360.e4. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ikejiri N: The vitamin A-storing cells in the human and rat pancreas. Kurume Med J. 37:67–81. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ahmad RS, Eubank TD, Lukomski S and Boone BA: Immune cell modulation of the extracellular matrix contributes to the pathogenesis of pancreatic cancer. Biomolecules. 11:9012021. View Article : Google Scholar : PubMed/NCBI | |
Bazzichetto C, Conciatori F, Luchini C, Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G, Cognetti F, et al: From genetic alterations to tumor microenvironment: The Ariadne's String in pancreatic cancer. Cells. 9:3092020. View Article : Google Scholar : PubMed/NCBI | |
Mews P, Phillips P, Fahmy R, Korsten M, Pirola R, Wilson J and Apte M: Pancreatic stellate cells respond to inflammatory cytokines: Potential role in chronic pancreatitis. Gut. 50:535–541. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Chen J, Wang J, Ma S, Feng W, Wu Z, Guo Y, Zhou H, Mi W, Chen W, et al: Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis. Immunity. 55:1185–1199.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schnittert J, Bansal R and Prakash J: Targeting pancreatic stellate cells in cancer. Trends Cancer. 5:128–142. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, LeBleu VS and Kalluri R: Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 39:548–565.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
van Duijneveldt G, Griffin MDW and Putoczki TL: Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond). 134:2091–2115. 2020. View Article : Google Scholar : PubMed/NCBI | |
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, von Strandmann EP, Slater EP, Bartsch JW, Bauer C and Lauth M: The immune microenvironment in pancreatic cancer. Int J Mol Sci. 21:73072020. View Article : Google Scholar : PubMed/NCBI | |
Miyai Y, Esaki N, Takahashi M and Enomoto A: Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives. Cancer Sci. 111:1047–1057. 2020. View Article : Google Scholar : PubMed/NCBI | |
Opitz F, Haeberle L, Daum A and Esposito I: Tumor microenvironment in pancreatic intraepithelial neoplasia. Cancers (Basel). 13:61882021. View Article : Google Scholar : PubMed/NCBI | |
Carpenter ES, Elhossiny AM, Kadiyala P, Li J, McGue J, Griffith BD, Zhang Y, Edwards J, Nelson S, Lima F, et al: Analysis of donor pancreata defines the transcriptomic signature and microenvironment of early neoplastic lesions. Cancer Discov. 13:1324–1345. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ and Habtezion A: Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 6:71582015. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zhang L, Shi J, He R, Yang W, Habtezion A, Niu N, Lu P and Xue J: Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine. 58:1029202020. View Article : Google Scholar : PubMed/NCBI | |
Hingorani SR: Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nat Rev Cancer. 23:57–77. 2023. View Article : Google Scholar : PubMed/NCBI | |
Garlanda C and Mantovani A: Interleukin-1 in tumor progression, therapy, and prevention. Cancer Cell. 39:1023–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boersma B, Jiskoot W, Lowe P and Bourquin C: The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine Growth Factor Rev. 62:1–14. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dinarello CA, Simon A and van der Meer JWM: Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 11:633–652. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dinarello C: Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 281:8–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
Narros-Fernández P, Chomanahalli Basavarajappa S and Walsh PT: Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J. 291:1849–1869. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tomimatsu S, Ichikura T and Mochizuki H: Significant correlation between expression of interleukin-1alpha and liver metastasis in gastric carcinoma. Cancer. 91:1272–1276. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xue M, Zhu Y, Jiang Y, Han L, Shi M, Su R, Wang L, Xiong C, Wang C, Wang T, et al: Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment. Nat Commun. 14:46002023. View Article : Google Scholar : PubMed/NCBI | |
Das S, Shapiro B, Vucic E, Vogt S and Bar-Sagi D: Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res. 80:1088–1101. 2020. View Article : Google Scholar : PubMed/NCBI | |
Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M, Canevazzi P, Dunsmore G, et al: IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature. 623:415–422. 2023. View Article : Google Scholar : PubMed/NCBI | |
Herremans KD, Szymkiewicz DD, Riner AN, Bohan RP, Tushoski GW, Davidson AM, Lou X, Leong MC, Dean BD, Gerber M, et al: The interleukin-1 axis and the tumor immune microenvironment in pancreatic ductal adenocarcinoma. Neoplasia. 28:1007892022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Huang H, Zheng X, Li Y, Chen J, Tan B, Liu Y, Sun R, Xu B, Yang M, et al: IL1R2 increases regulatory T cell population in the tumor microenvironment by enhancing MHC-II expression on cancer-associated fibroblasts. J Immunother Cancer. 10:e0045852022. View Article : Google Scholar | |
Underwood PW, Gerber MN, Nguyen K, Delitto D, Han S, Thomas RM, Forsmark CE, Trevino JG, Gooding WE and Hughes SJ: Protein signatures and tissue diagnosis of pancreatic cancer. J Am Coll Surg. 230:26–36.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
Waldmann T: Cytokines in cancer immunotherapy. Cold Spring Hard Perspect Biol. 10:a0284722018. View Article : Google Scholar : PubMed/NCBI | |
Yasuda K, Nakanishi K and Tsutsui H: Interleukin-18 in health and disease. Int J Mol Sci. 20:6492019. View Article : Google Scholar : PubMed/NCBI | |
Kaplanski G: Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 281:138–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schneider A, Haas SL, Hildenbrand R, Siegmund S, Reinhard I, Nakovics H, Singer MV and Feick P: Enhanced expression of interleukin-18 in serum and pancreas of patients with chronic pancreatitis. World J Gastroentero. 12:6507–6514. 2006. View Article : Google Scholar | |
Manohar M, Verma AK, Venkateshaiah SU and Mishra A: Role of eosinophils in the initiation and progression of pancreatitis pathogenesis. Am J Physiol Gastrointest Liver Physiol. 314:G211–G222. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li CX, Cui LH, Zhang LQ, Yang L, Zhuo YZ, Cui NQ and Zhang SK: Role of NLR family pyrin domain-containing 3 inflammasome in the activation of pancreatic stellate cells. Exp Cell Res. 404:1126342021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang R, Yang Z, Tian Y, Zhu Y, Wang C, et al: The NLRP3 inflammasome in fibrosis and aging: The known unknowns. Ageing Res Rev. 79:1016382022. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Damsky W, Weizman OE, McGeary MK, Hartmann KP, Rosen CE, Fischer S, Jackson R, Flavell RA, Wang J, et al: IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature. 583:609–614. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmed A, Klotz R, Köhler S, Giese N, Hackert T, Springfeld C, Jäger D and Halama N: Immune features of the peritumoral stroma in pancreatic ductal adenocarcinoma. Front Immunol. 13:9474072022. View Article : Google Scholar : PubMed/NCBI | |
Tarhini AA, Millward M, Mainwaring P, Kefford R, Logan T, Pavlick A, Kathman SJ, Laubscher KH, Dar MM and Kirkwood JM: A phase 2, randomized study of SB-485232, rhIL-18, in patients with previously untreated metastatic melanoma. Cancer. 115:859–868. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M and Dinarello CA: Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA. 97:1190–1195. 2000. View Article : Google Scholar : PubMed/NCBI | |
Menachem A, Alteber Z, Cojocaru G, Fridman Kfir T, Blat D, Leiderman O, Galperin M, Sever L, Cohen N, Cohen K, et al: Unleashing natural IL18 activity using an anti-IL18BP blocker induces potent immune stimulation and antitumor effects. Cancer Immunol Res. 12:687–703. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee R and Jevnikar AM: IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury. Kidney Int. 87:396–408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liew FY, Girard JP and Turnquist HR: Interleukin-33 in health and disease. Nat Rev Immunol. 16:676–689. 2016. View Article : Google Scholar : PubMed/NCBI | |
Larsen KM, Minaya MK, Vaish V and Peña MMO: The role of IL-33/ST2 pathway in tumorigenesis. Int J Mol Sci. 19:26762018. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Ameri AH, Dempsey KE, Conrad DN, Kem M, Mino-Kenudson M and Demehri S: Nuclear IL-33/SMAD signaling axis promotes cancer development in chronic inflammation. EMBO J. 40:e1061512021. View Article : Google Scholar : PubMed/NCBI | |
Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, et al: Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 40:153–167.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Andersson P, Yang Y, Hosaka K, Zhang Y, Fischer C, Braun H, Liu S, Yu G, Liu S, Beyaert R, et al: Molecular mechanisms of IL-33-mediated stromal interactions in cancer metastasis. JCI insight. 3:e1223752018. View Article : Google Scholar : PubMed/NCBI | |
Moral JA, Leung J, Rojas LA, Ruan J, Zhao J, Sethna Z, Ramnarain A, Gasmi B, Gururajan M, Redmond D, et al: ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature. 579:130–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, He X, Zhang Y, Hosaka K, Andersson P, Wu J, Wu J, Jing X, Du Q, Hui X, et al: Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut. 71:129–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
Alonso-Curbelo D, Ho YJ, Burdziak C, Maag JLV, Morris JP IV, Chandwani R, Chen HA, Tsanov KM, Barriga FM, Luan W, et al: A gene-environment-induced epigenetic program initiates tumorigenesis. Nature. 590:642–648. 2021. View Article : Google Scholar : PubMed/NCBI | |
Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, Xie Y, Zhao Z, Zhao CJ, Chen HA, et al: Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science. 380:eadd53272023. View Article : Google Scholar : PubMed/NCBI | |
Hatzioannou A, Banos A, Sakelaropoulos T, Fedonidis C, Vidali MS, Köhne M, Händler K, Boon L, Henriques A, Koliaraki V, et al: An intrinsic role of IL-33 in Treg cell-mediated tumor immunoevasion. Nat Immunol. 21:75–85. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM and Turnbull AK: The IL6-like cytokine family: Role and biomarker potential in breast cancer. J Pers Med. 11:10732021. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM, Ridinger-Saison M, DelGiorno KE, Antal CE, Liang G, et al: Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 569:131–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, Stanger BZ, Chung I, Rhim AD and di Magliano MP: Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res. 73:6359–6374. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee YE, Go GY, Koh EY, Yoon HN, Seo M, Hong SM, Jeong JH, Kim JC, Cho D, Kim TS, et al: Synergistic therapeutic combination with a CAF inhibitor enhances CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6. J Immunother Cancer. 11:e0061302023. View Article : Google Scholar : PubMed/NCBI | |
Ramsey ML, Talbert E, Ahn D, Bekaii-Saab T, Badi N, Bloomston PM, Conwell DL, Cruz-Monserrate Z, Dillhoff M, Farren MR, et al: Circulating interleukin-6 is associated with disease progression, but not cachexia in pancreatic cancer. Pancreatology. 19:80–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi B, Tucker SL, Li D, Abbruzzese JL and Kurzrock R: Cytokines in pancreatic carcinoma: Correlation with phenotypic characteristics and prognosis. Cancer. 101:2727–2736. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kumari N, Dwarakanath BS, Das A and Bhatt AN: Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37:11553–11572. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagathihalli NS, Castellanos JA, VanSaun MN, Dai X, Ambrose M, Guo Q, Xiong Y and Merchant NB: Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget. 7:65982–65992. 2016. View Article : Google Scholar : PubMed/NCBI | |
Angevin E, Tabernero J, Elez E, Cohen SJ, Bahleda R, van Laethem JL, Ottensmeier C, Lopez-Martin JA, Clive S, Joly F, et al: A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 20:2192–2204. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goumas FA, Holmer R, Egberts JH, Gontarewicz A, Heneweer C, Geisen U, Hauser C, Mende MM, Legler K, Röcken C, et al: Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int J Cancer. 137:1035–1046. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Van Cutsem E, Bendell J, Hidalgo M, Li CP, Salvo MG, Macarulla T, Sahai V, Sama A, Greeno E, et al: Ruxolitinib + capecitabine in advanced/metastatic pancreatic cancer after disease progression/intolerance to first-line therapy: JANUS 1 and 2 randomized phase III studies. Invest New Drugs. 36:683–695. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wong ALA, Hirpara JL, Pervaiz S, Eu JQ, Sethi G and Goh BC: Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs. 26:883–887. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ouyang W, Rutz S, Crellin NK, Valdez PA and Hymowitz SG: Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 29:71–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lazear HM, Schoggins JW and Diamond MS: Shared and distinct functions of type I and type III interferons. Immunity. 50:907–923. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marcon F, Zuo J, Pearce H, Nicol S, Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R, Roberts KJ and Moss P: NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology. 9:18454242020. View Article : Google Scholar : PubMed/NCBI | |
Xuan X, Tian Z, Zhang M, Zhou J, Gao W, Zhang Y, Zhang Y, Lei B, Ni B, Wu Y and Fan W: Diverse effects of interleukin-22 on pancreatic diseases. Pancreatology. 18:231–237. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen J, Andreatta M, Feng B, Xie YQ, Wenes M, Wang Y, Gao M, Hu X, Romero P, et al: IL-10-expressing CAR T cells resist dysfunction and mediate durable clearance of solid tumors and metastases. Nat Biotechnol. Jan 2–2024.(Epub ahead of print). View Article : Google Scholar | |
Ip WKE, Hoshi N, Shouval DS, Snapper S and Medzhitov R: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 356:513–519. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin WR, Lim SN, Yen TH and Alison MR: The influence of bone marrow-secreted IL-10 in a mouse model of cerulein-induced pancreatic fibrosis. Biomed Res Int. 2016:46015322016. View Article : Google Scholar : PubMed/NCBI | |
Qiao J, Liu Z, Dong C, Luan Y, Zhang A, Moore C, Fu K, Peng J, Wang Y, Ren Z, et al: Targeting tumors with IL-10 prevents dendritic cell-mediated CD8+ T cell apoptosis. Cancer Cell. 35:901–915.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Naing A, Infante JR, Papadopoulos KP, Chan IH, Shen C, Ratti NP, Rojo B, Autio KA, Wong DJ, Patel MR, et al: PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8+ T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell. 34:775–791.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
Labadie KP, Kreuser SA, Brempelis KJ, Daniel SK, Jiang X, Sullivan KM, Utria AF, Kenerson HL, Kim TS, Crane CA and Pillarisetty VG: Production of an interleukin-10 blocking antibody by genetically engineered macrophages increases cancer cell death in human gastrointestinal tumor slice cultures. Cancer Gene Ther. 30:1227–1233. 2023. View Article : Google Scholar : PubMed/NCBI | |
Perusina Lanfranca M, Lin Y, Fang J, Zou W and Frankel T: Biological and pathological activities of interleukin-22. J Mol Med (Berl). 94:523–534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Perusina Lanfranca M, Zhang Y, Girgis A, Kasselman S, Lazarus J, Kryczek I, Delrosario L, Rhim A, Koneva L, Sartor M, et al: Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology. 158:1417–1432.e11. 2020. View Article : Google Scholar : PubMed/NCBI | |
Curd LM, Favors SE and Gregg RK: Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol. 168:192–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arshad T, Mansur F, Palek R, Manzoor S and Liska V: A double edged sword role of interleukin-22 in wound healing and tissue regeneration. Front Immunol. 11:21482020. View Article : Google Scholar : PubMed/NCBI | |
Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X, Zheng M, Zakhari S, Kolls JK and Gao B: Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci. 8:249–257. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R, Zhang C and Xu H: The role of Interleukin-22 in severe acute pancreatitis. Mol Med. 30:602024. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Wahib R, Zazara DE, Lücke J, Shiri AM, Kempski J, Zhao L, Agalioti T, Machicote AP, Giannou O, et al: CD4+ T cell-derived IL-22 enhances liver metastasis by promoting angiogenesis. Oncoimmunology. 12:22696342023. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Zhao Q, Sharma V, Nguyen LP, Lee YN, Pham KL, Edderkaoui M, Pandol SJ, Park W and Habtezion A: Aryl hydrocarbon receptor ligands in cigarette smoke induce production of interleukin-22 to promote pancreatic fibrosis in models of chronic pancreatitis. Gastroenterology. 151:1206–1217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, et al: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 39:372–385. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Fu T, He P, Du C and Xu K: Construction of a five-gene prognostic model based on immune-related genes for the prediction of survival in pancreatic cancer. Biosci Rep. 41:BSR202043012021. View Article : Google Scholar : PubMed/NCBI | |
Lu SW, Pan HC, Hsu YH, Chang KC, Wu LW, Chen WY and Chang MS: IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun. 11:46112020. View Article : Google Scholar : PubMed/NCBI | |
McGeachy MJ, Cua DJ and Gaffen SL: The IL-17 family of cytokines in health and disease. Immunity. 50:892–906. 2019. View Article : Google Scholar : PubMed/NCBI | |
Meehan EV and Wang K: Interleukin-17 family cytokines in metabolic disorders and cancer. Genes (Basel). 13:16432022. View Article : Google Scholar : PubMed/NCBI | |
Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F and Pelletier JP: IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 160:3513–3521. 1998. View Article : Google Scholar : PubMed/NCBI | |
Loncle C, Bonjoch L, Folch-Puy E, Lopez-Millan MB, Lac S, Molejon MI, Chuluyan E, Cordelier P, Dubus P, Lomberk G, et al: IL17 functions through the novel REG3β-JAK2-STAT3 inflammatory pathway to promote the transition from chronic pancreatitis to pancreatic cancer. Cancer Res. 75:4852–4862. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A and Li F: Mechanistic insights into the roles of the IL-17/IL-17R families in pancreatic cancer. Int J Mol Sci. 24:135392023. View Article : Google Scholar : PubMed/NCBI | |
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, et al: Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell. 42:85–100.e6. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Guo F, Zhu Y, Zhou Q, Li T, Xiang H and Shang D: IL-17 in pancreatic disease: Pathogenesis and pharmacotherapy. Am J Cancer Res. 10:3551–3564. 2020.PubMed/NCBI | |
Picard FSR, Lutz V, Brichkina A, Neuhaus F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI, et al: IL-17A-producing CD8+ T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut. 72:1510–1522. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mucciolo G, Curcio C, Roux C, Li WY, Capello M, Curto R, Chiarle R, Giordano D, Satolli MA, Lawlor R, et al: IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches on their protumorigenic functions. Proc Natl Acad Sci USA. 118:e20203951182021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Betzler C, Lohneis P, Popp MC, Qin J, Kalinski T, Wartmann T, Bruns CJ, Zhao Y and Popp FC: The IL-17A/IL-17RA axis is not related to overall survival and cancer stem cell modulation in pancreatic cancer. Int J Mol Sci. 21:22152020. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Chen H, Wu X, Hu L, Huang Q and Jin Y: Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine. 89:34–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang Y, Yin K, Xu P, Tian J, Ma J, Tian X, Wang Y, Tang X, Xu H and Wang S: IL-17A weakens the antitumor immuity by inhibiting apoptosis of MDSCs in Lewis lung carcinoma bearing mice. Oncotarget. 8:4814–4825. 2017. View Article : Google Scholar : PubMed/NCBI | |
McAndrews KM, Chen Y, Darpolor JK, Zheng X, Yang S, Carstens JL, Li B, Wang H, Miyake T, Correa de Sampaio P, et al: Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12:1580–1597. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ware MJ, Keshishian V, Law JJ, Ho JC, Favela CA, Rees P, Smith B, Mohammad S, Hwang RF, Rajapakshe K, et al: Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials. 108:129–142. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Qin J, Dai Y, Zhao S, Zhan Q, Cui P, Ren L, Wang X, Zhang R, Gao C, et al: Prospective observational study on biomarkers of response in pancreatic ductal adenocarcinoma. Nat Med. 30:749–761. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bärthel S, Falcomatà C, Rad R, Theis FJ and Saur D: Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nat Cancer. 4:454–467. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ayars M, O'Sullivan E, Macgregor-Das A, Shindo K, Kim H, Borges M, Yu J, Hruban RH and Goggins M: IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth. Oncotarget. 8:83370–83383. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hulst SPL: Zur kenntnis der Genese des Adenokarzinoms und Karzinoms des Pankreas. Virchows Arch. 180:288–316. 1905. View Article : Google Scholar | |
Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L, Pishesha N, Blomberg O, Tyler PM, Servos MM, et al: Targeting cytokine therapy to the pancreatic tumor microenvironment using PD-L1-specific VHHs. Cancer Immunol Res. 6:389–401. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmed A, Köhler S, Klotz R, Giese N, Lasitschka F, Hackert T, Springfeld C, Zörnig I, Jäger D and Halama N: Peripheral blood and tissue assessment highlights differential tumor-circulatory gradients of IL2 and MIF with prognostic significance in resectable pancreatic ductal adenocarcinoma. Oncoimmunology. 10:19621352021. View Article : Google Scholar : PubMed/NCBI | |
Mayer P, Linnebacher A, Glennemeier-Marke H, Marnet N, Bergmann F, Hackert T, Klauss M, Poth T and Gaida MM: The microarchitecture of pancreatic cancer as measured by diffusion-weighted magnetic resonance imaging is altered by T cells with a tumor promoting Th17 phenotype. Int J Mol Sci. 21:3462020. View Article : Google Scholar : PubMed/NCBI | |
Linnebacher A, Mayer P, Marnet N, Bergmann F, Herpel E, Revia S, Yin L, Liu L, Hackert T, Giese T, et al: Interleukin 21 receptor/ligand interaction is linked to disease progression in pancreatic cancer. Cells. 8:11042019. View Article : Google Scholar : PubMed/NCBI | |
Zaidi N, Quezada SA, Kuroiwa JMY, Zhang L, Jaffee EM, Steinman RM and Wang B: Anti-CTLA-4 synergizes with dendritic cell-targeted vaccine to promote IL-3-dependent CD4+ effector T cell infiltration into murine pancreatic tumors. Ann N Y Acad Sci. 1445:62–73. 2019. View Article : Google Scholar : PubMed/NCBI | |
Savid-Frontera C, Viano ME, Baez NS, Lidon NL, Fontaine Q, Young HA, Vimeux L, Donnadieu E and Rodriguez-Galan MC: Exploring the immunomodulatory role of virtual memory CD8+ T cells: Role of IFN gamma in tumor growth control. Front Immunol. 13:9710012022. View Article : Google Scholar : PubMed/NCBI | |
Hussain SM, Reed LF, Krasnick BA, Miranda-Carboni G, Fields RC, Bi Y, Elahi A, Ajidahun A, Dickson PV, Deneve JL, et al: IL23 and TGF-ß diminish macrophage associated metastasis in pancreatic carcinoma. Sci Rep. 8:58082018. View Article : Google Scholar : PubMed/NCBI | |
Mirlekar B, Michaud D, Lee SJ, Kren NP, Harris C, Greene K, Goldman EC, Gupta GP, Fields RC, Hawkins WG, et al: B cell-derived IL35 drives STAT3-dependent CD8+ T-cell exclusion in pancreatic cancer. Cancer Immunol Res. 8:292–308. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, Zhang L, Bardeesy N and Storz P: The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep. 19:1322–1333. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Shen X, Kang Q, Yang X, Denzinger M, Kornmann M and Traub B: Loss of interleukin-13-receptor-alpha-1 induces apoptosis and promotes EMT in pancreatic cancer. Int J Mol Sci. 23:36592022. View Article : Google Scholar : PubMed/NCBI | |
Fujisawa T, Shimamura T, Goto K, Nakagawa R, Muroyama R, Ino Y, Horiuchi H, Endo I, Maeda S, Harihara Y, et al: A novel role of interleukin 13 receptor alpha2 in perineural invasion and its association with poor prognosis of patients with pancreatic ductal adenocarcinoma. Cancers (Basel). 12:12942020. View Article : Google Scholar : PubMed/NCBI | |
Arnoletti JP, Reza J, Rosales A, Monreal A, Fanaian N, Whisner S, Srivastava M, Rivera-Otero J, Yu G, Phanstiel Iv O, et al: Pancreatic ductal adenocarcinoma (PDAC) circulating tumor cells influence myeloid cell differentiation to support their survival and immunoresistance in portal vein circulation. PLoS One. 17:e02657252022. View Article : Google Scholar : PubMed/NCBI |