Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review)
- Authors:
- Cen Jin
- Sijian Liao
- Guoliang Lu
- Bill D. Geng
- Zi Ye
- Jianwei Xu
- Guo Ge
- Dan Yang
-
Affiliations: Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China, Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China, Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China, School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA, Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China, Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China - Published online on: July 8, 2024 https://doi.org/10.3892/mmr.2024.13286
- Article Number: 162
-
Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Xie J, Xiao X, Dong Z and Wang Q: The systemic inflammation score is associated with the survival of patients with prostate cancer. J Inflamm Res. 16:963–975. 2023. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Wang L, Du Y, Liu X, Chen Z, Weng X, Guo J, Chen H, Wang M and Wang X: Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol. 53:2503–2517. 2018.PubMed/NCBI | |
Dong D, Zhang L, Bai C, Ma N, Ji W, Jia L, Zhang A, Zhang P, Ren L and Zhou Y: UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer. Cancer Sci. 110:1244–1255. 2019. View Article : Google Scholar : PubMed/NCBI | |
Belmonte M, Saia G, Zugni F, Alessi S, Colombo A, Summers PE, Luzzago S, Marvaso G, Musi G, De Cobelli O, et al: The role of MRI in the management of a prostate cancer patient with bone and lymph nodes metastases. A case report. Acta Biomed. 92:e20212142021.PubMed/NCBI | |
Witt K, Evans-Axelsson S, Lundqvist A, Johansson M, Bjartell A and Hellsten R: Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer. Cancer Immunol Immunother. 70:3155–3166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun CY, Talukder M, Cao D and Chen CW: Gilteritinib enhances Anti-tumor efficacy of CDK4/6 inhibitor, abemaciclib in lung cancer cells. Front Pharmacol. 13:8297592022. View Article : Google Scholar : PubMed/NCBI | |
Rysanek D, Vasicova P, Kolla JN, Sedlak D, Andera L, Bartek J and Hodny Z: Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging. 14:6381–6414. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rhinn M, Zapata-Bodalo I, Klein A, Plassat JL, Knauer-Meyer T and Keyes WM: Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects. PLoS Biol. 20:e30016642022. View Article : Google Scholar : PubMed/NCBI | |
Alessio N, Aprile D, Squillaro T, Di Bernardo G, Finicelli M, Melone MA, Peluso G and Galderisi U: The senescence-associated secretory phenotype (SASP) from mesenchymal stromal cells impairs growth of immortalized prostate cells but has no effect on metastatic prostatic cancer cells. Aging (Albany NY). 11:5817–5828. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kallenbach J, Atri Roozbahani G, Heidari Horestani M and Baniahmad A: Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci. 12:2002022. View Article : Google Scholar : PubMed/NCBI | |
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, et al: Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol. 21:258–273. 2024. View Article : Google Scholar : PubMed/NCBI | |
Takemoto K, Kobatake K, Miura K, Fukushima T, Babasaki T, Miyamoto S, Sekino Y, Kitano H, Goto K, Ikeda K, et al: BACH1 promotes clear cell renal cell carcinoma progression by upregulating oxidative stress-related tumorigenicity. Cancer Sci. 114:436–448. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hayflick L and Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621. 1961. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y and Kong QP: Longevity-associated transcription factor ATF7 promotes Healthspan by suppressing cellular senescence and systematic inflammation. Aging Dis. 14:1374–1389. 2023.PubMed/NCBI | |
Ngoi NY, Liew AQx, Chong SJF, Davids MS, Clement MV and Pervaiz S: The redox-senescence axis and its therapeutic targeting. Redox Biol. 45:1020322021. View Article : Google Scholar : PubMed/NCBI | |
Park SS, Choi YW, Kim JH, Kim HS and Park TJ: Senescent tumor cells: An overlooked adversary in the battle against cancer. Exp Mol Med. 53:1834–1841. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alhaddad L, Nofal Z, Pustovalova M, Osipov AN and Leonov S: Long-term cultured human glioblastoma multiforme cells demonstrate increased radiosensitivity and senescence-associated secretory phenotype in response to irradiation. Int J Mol Sci. 24:20022023. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Uhl B, Gires O and Reichel CA: A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J Biomed Sci. 30:212023. View Article : Google Scholar : PubMed/NCBI | |
Mirzakhani K, Kallenbach J, Rasa SMM, Ribaudo F, Ungelenk M, Ehsani M, Gong W, Gassler N, Leeder M, Grimm MO, et al: The androgen receptor-lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene. 41:943–959. 2022. View Article : Google Scholar : PubMed/NCBI | |
Birch J and Gil J: Senescence and the SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576. 2020. View Article : Google Scholar : PubMed/NCBI | |
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY and Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI | |
Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, Leote AC, D'Artista L, Gallage S, Seehawer M, et al: PTBP1-mediated alternative splicing regulates the inflammatory Secretome and the Pro-tumorigenic effects of senescent cells. Cancer Cell. 34:85–102.e9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yue Z, Nie L, Zhao P, Ji N, Liao G and Wang Q: Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front Immunol. 13:10193132022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Yue X, Sun Z, Hambright WS, Wei J, Li Y, Matre P, Cui Y, Wang Z, Rodney G, et al: Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics rescues the function of muscle stem cells. J Cachexia Sarcopenia Muscle. 13:3137–3148. 2022. View Article : Google Scholar : PubMed/NCBI | |
Khalil R, Diab-Assaf M and Lemaitre JM: Emerging therapeutic approaches to target the dark side of senescent cells: New hopes to treat aging as a disease and to delay age-related pathologies. Cells. 12:9152023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD and Zhu Y: Cellular senescence: A key therapeutic target in aging and diseases. J Clin Invest. 132:e1584502022. View Article : Google Scholar : PubMed/NCBI | |
Duan D, Shang M, Han Y, Liu J, Liu J, Kong SH, Hou J, Huang B, Lu J and Zhang Y: EZH2-CCF-cGAS axis promotes breast cancer metastasis. Int J Mol Sci. 23:17882022. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F and Chen W: Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol. 15:13999262024. View Article : Google Scholar : PubMed/NCBI | |
Lee KS, Lin S, Copland DA, Dick AD and Liu J: Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation. 18:322021. View Article : Google Scholar : PubMed/NCBI | |
Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G, et al: Enhancing chemotherapy efficacy in Pten-Deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9:75–89. 2014. View Article : Google Scholar : PubMed/NCBI | |
Parry AJ, Hoare M, Bihary D, Hänsel-Hertsch R, Smith S, Tomimatsu K, Mannion E, Smith A, D'Santos P, Russell IA, et al: NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence. Nat Commun. 9:18402018. View Article : Google Scholar : PubMed/NCBI | |
Tan SYX, Zhang J and Tee WW: Epigenetic regulation of inflammatory signaling and inflammation-induced cancer. Front Cell Dev Biol. 10:9314932022. View Article : Google Scholar : PubMed/NCBI | |
Chandrasekaran A, Idelchik MDPS and Melendez JA: Redox control of senescence and age-related disease. Redox Biol. 11:91–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takasugi M, Yoshida Y and Ohtani N: Cellular senescence and the tumour microenvironment. Mol Oncol. 16:3333–3351. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wan R, Long S, Ma S, Yan P, Li Z, Xu K, Lian H, Li W, Duan Y, Zhu M, et al: NR2F2 alleviates pulmonary fibrosis by inhibition of epithelial cell senescence. Respir Res. 25:1542024. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y and Zhang W: Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol OncolJ Hematol Oncol. 16:282023. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ, Lee YR, Kang D, Lee HC, Seo HR, Ryu JK, Kim YN, Ko YG, Park HJ and Lee JS: Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 490:100–110. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chibaya L, Snyder J and Ruscetti M: Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol. 86:827–845. 2022. View Article : Google Scholar : PubMed/NCBI | |
Volonte D and Galbiati F: Caveolin-1, a master regulator of cellular senescence. Cancer Metastasis Rev. 39:397–414. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pardella E, Pranzini E, Nesi I, Parri M, Spatafora P, Torre E, Muccilli A, Castiglione F, Fambrini M, Sorbi F, et al: Therapy-induced stromal senescence promoting aggressiveness of prostate and ovarian cancer. Cells. 11:40262022. View Article : Google Scholar : PubMed/NCBI | |
Xu MY, Xia ZY, Sun JX, Liu CQ, An Y, Xu JZ, Zhang SH, Zhong XY, Zeng N, Ma SY, et al: A new perspective on prostate cancer treatment: The interplay between cellular senescence and treatment resistance. Front Immunol. 15:13950472024. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Han X, Min Z, He X and Zhu S: Prognostic signatures associated with high infiltration of Tregs in bone metastatic prostate cancer. Aging. 13:17442–17461. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gilbert S, Péant B, Malaquin N, Tu V, Fleury H, Leclerc-Desaulniers K, Rodier F, Mes-Masson AM and Saad F: Targeting IKKε in androgen-independent prostate cancer causes phenotypic senescence and genomic instability. Mol Cancer Ther. 21:407–418. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z, Machala M, Kozubík A and Souček K: Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. 13:526–536. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blute ML, Damaschke N, Wagner J, Yang B, Gleave M, Fazli L, Shi F, Abel EJ, Downs TM, Huang W and Jarrard DF: Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS One. 12:e01720482017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Peng Y, Yuan Y, Gao Y, Hu F, Wang J, Zhu X, Feng X, Cheng Y, Wei Y, et al: Histone methyltransferase SET8 is regulated by miR-192/215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells. Cell Death Dis. 11:9372020. View Article : Google Scholar : PubMed/NCBI | |
Tao YP, Zhu HY, Shi QY, Wang CX, Hua YX, Hu HY, Zhou QY, Zhou ZL, Sun Y, Wang XM, et al: S1PR1 regulates ovarian cancer cell senescence through the PDK1-LATS1/2-YAP pathway. Oncogene. 42:3491–3502. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Li D, Yin J, Pan H, Ye H, Bowman J, Capaldo B and Kelly K: TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther. 29:1463–1476. 2022. View Article : Google Scholar : PubMed/NCBI | |
Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM and Gewirtz DA: Senolytic therapy: A potential approach for the elimination of oncogene-induced senescent HPV-positive cells. Int J Mol Sci. 23:155122022. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Huang X, Wu Q and Liu F: Senescent stromal cells in the tumor microenvironment: Victims or accomplices? Cancers. 15:19272023. View Article : Google Scholar : PubMed/NCBI | |
Brandmaier A, Hou SQ and Shen WH: Cell cycle control by PTEN. J Mol Biol. 429:2265–2277. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yang X, Sun X, Xu X, Li X, Guo Y, Wang J, Li X, Yao L, Wang H and Shen L: Effect of PTEN loss on metabolic reprogramming in prostate cancer cells. Oncol Lett. 17:2856–2866. 2019.PubMed/NCBI | |
Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, Gargowitsch L, Bornert JM and Metzger D: PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med. 215:1749–1763. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Carracedo A, Lin HK, Koutcher JA, Behrendt N, Egia A, Alimonti A, Carver BS, Gerald W, Teruya-Feldstein J, et al: Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Sci Signal. 2:ra442009. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W and Li J: Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 7:3912022. View Article : Google Scholar : PubMed/NCBI | |
Hua H, Zheng C, Fan J, Li X, Xie W, Chen J and Yu C: The senescence-related signature predicts prognosis and characterization of tumor microenvironment infiltration in pancreatic cancer. BioMed Res Int. 2022:1–28. 2022. View Article : Google Scholar | |
Dyachkova U, Vigovskiy M, Basalova N, Efimenko A and Grigorieva O: M2-Macrophage-induced chronic inflammation promotes reversible mesenchymal stromal cell senescence and reduces their anti-fibrotic properties. Int J Mol Sci. 24:170892023. View Article : Google Scholar : PubMed/NCBI | |
Stanojković TP, Matić IZ, Petrović N, Stanković V, Kopčalić K, Besu I, Đorđić Crnogorac M, Mališić E, Mirjačić-Martinović K, Vuletić A, et al: Evaluation of cytokine expression and circulating immune cell subsets as potential parameters of acute radiation toxicity in prostate cancer patients. Sci Rep. 10:190022020. View Article : Google Scholar : PubMed/NCBI | |
González-Ochoa S, Tellez-Bañuelos MC, Méndez-Clemente AS, Bravo-Cuellar A, Hernández Flores G, Palafox-Mariscal LA, Haramati J, Pedraza-Brindis EJ, Sánchez-Reyes K and Ortiz-Lazareno PC: Combination blockade of the IL6R/STAT-3 Axis with TIGIT and its impact on the functional activity of NK cells against prostate cancer cells. J Immunol Res. 2022:18108042022. View Article : Google Scholar : PubMed/NCBI | |
Méndez-Clemente A, Bravo-Cuellar A, González-Ochoa S, Santiago-Mercado M, Palafox-Mariscal L, Jave-Suárez L, Solorzano-Ibarra F, Villaseñor-García M, Ortiz-Lazareno P and Hernández-Flores G: Dual STAT-3 and IL-6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL-6/IL-6R/STAT-3 axis. Oncol Rep. 48:1382022. View Article : Google Scholar : PubMed/NCBI | |
Silk N, Reich J, Sinha R, Chawla S, Geary K and Zhang D: The effects of resveratrol on prostate cancer through targeting the tumor microenvironment. J Xenobiotics. 11:16–32. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park SY, Cui Z, Kim B, Park G and Choi YW: Treatment with gold nanoparticles using cudrania tricuspidata root extract induced downregulation of MMP-2/-9 and PLD1 and inhibited the invasiveness of human U87 Glioblastoma cells. Int J Mol Sci. 21:12822020. View Article : Google Scholar : PubMed/NCBI | |
Fahs A, Hussein N, Zalzali H, Ramadan F, Ghamloush F, Tamim H, El Homsi M, Badran B, Boulos F, Tawil A, et al: CD147 promotes tumorigenesis via Exosome-mediated signaling in rhabdomyosarcoma. Cells. 11:22672022. View Article : Google Scholar : PubMed/NCBI | |
Bair EL, Chen ML, McDaniel K, Sekiguchi K, Cress AE, Nagle RB and Bowden GT: Membrane type 1 Matrix Metalloprotease cleaves Laminin-10 and promotes prostate cancer cell migration. Neoplasia. 7:380–389. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wei R, Wong JPC, Lyu P, Xi X, Tong O, Zhang SD, Yuen HF, Shirasawa S and Kwok HF: In vitro and clinical data analysis of Osteopontin as a prognostic indicator in colorectal cancer. J Cell Mol Med. 22:4097–4105. 2018. View Article : Google Scholar : PubMed/NCBI | |
Miftakhova R, Hedblom A, Semenas J, Robinson B, Simoulis A, Malm J, Rizvanov A, Heery DM, Mongan NP, Maitland NJ, et al: Cyclin A1 and P450 aromatase promote metastatic homing and growth of Stem-like prostate cancer cells in the bone marrow. Cancer Res. 76:2453–2464. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guccini I, Revandkar A, D'Ambrosio M, Colucci M, Pasquini E, Mosole S, Troiani M, Brina D, Sheibani-Tezerji R, Elia AR, et al: Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell. 39:68–82.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR and Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 11:973–979. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Dessel LF, van Riet J, Smits M, Zhu Y, Hamberg P, van der Heijden MS, Bergman AM, van Oort IM, de Wit R, Voest EE, et al: The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 10:52512019. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal M, Saxena R, Asif N, Sinclair E, Tan J, Cruz I, Berry D, Kallakury B, Pham Q, Wang TTY and Chung FL: p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition. J Exp Clin Cancer Res. 38:3072019. View Article : Google Scholar : PubMed/NCBI | |
Wanjala J, Taylor BS, Chapinski C, Hieronymus H, Wongvipat J, Chen Y, Nanjangud GJ, Schultz N, Xie Y, Liu S, et al: Identifying actionable targets through integrative analyses of GEM model and human prostate cancer genomic profiling. Mol Cancer Ther. 14:278–288. 2015. View Article : Google Scholar : PubMed/NCBI | |
Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA, Adejola N, Gürel M, Hicks J, Meeker AK, et al: Tracking the clonal origin of lethal prostate cancer. J Clin Invest. 123:4918–4922. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ding D, Blee AM, Zhang J, Pan Y, Becker NA, Maher LJ III, Jimenez R, Wang L and Huang H: Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat Commun. 14:46712023. View Article : Google Scholar : PubMed/NCBI | |
Jiang SJ and Wang S: Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumour Biol. 36:8177–8184. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shorning BY, Dass MS, Smalley MJ and Pearson HB: The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int J Mol Sci. 21:45072020. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Liu C, Chen C, Guo K, Tang Z, Luo Y, Chen L, Su Y and Xu K: Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging (Albany NY). 12:13255–13280. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Fan A, Zhang Y, Guo Z, Meng W, Pan W, Ma Z and Chen W: Cellular senescence: A potential mode of circular RNAs regulating prostate cancer. MedComm-Oncol. 2:e612023. View Article : Google Scholar | |
Ellis L, Lehet K, Ramakrishnan S, Adelaiye R, Miles KM, Wang D, Liu S, Atadja P, Carducci MA and Pili R: Concurrent HDAC and mTORC1 inhibition attenuate androgen receptor and hypoxia signaling associated with alterations in microRNA expression. PLoS One. 6:e271782011. View Article : Google Scholar : PubMed/NCBI | |
Park H, Williams K, Trikalinos NA, Larson S, Tan B, Waqar S, Suresh R, Morgensztern D, Van Tine BA, Govindan R, et al: A phase I trial of temsirolimus and erlotinib in patients with refractory solid tumors. Cancer Chemother Pharmacol. 87:337–347. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bendell JC, Kurkjian C, Infante JR, Bauer TM, Burris HA III, Greco FA, Shih KC, Thompson DS, Lane CM, Finney LH and Jones SF: A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest New Drugs. 33:463–471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li S, Sheng J, Liu Z, Fan Y, Zhang C, Lv T, Hu S, Jin J, Yu W and Song Y: Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. J Cell Mol Med. 25:2436–2449. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Qu S, Tesikova M, Wang L, Kristian A, Mælandsmo GM, Kong H, Zhang T, Jerónimo C, Teixeira MR, et al: Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proc Natl Acad Sci USA. 110:E2572–E2581. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pan HY and Valapala M: Regulation of autophagy by the glycogen synthase Kinase-3 (GSK-3) signaling pathway. Int J Mol Sci. 23:17092022. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Li Z and Song K: AR-mTOR-SRF axis regulates HMMR expression in human prostate cancer cells. Biomol Ther. 29:667–677. 2021. View Article : Google Scholar : PubMed/NCBI | |
Valenti MT, Mottes M, Dalle Carbonare L and Feron O: Editorial: Bone metastases. Front Oncol. 11:7415152021. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D, Gini B, Dang J, Zhu S, Yang H, De Jesus J, et al: Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov. 1:524–538. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L, Zhang W, Li D and Li L: CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Mol Carcinog. 55:1688–1699. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei XX, Hsieh AC, Kim W, Friedlander T, Lin AM, Louttit M and Ryan CJ: A phase I study of abiraterone acetate combined with BEZ235, a dual PI3K/mTOR inhibitor, in metastatic castration resistant prostate cancer. Oncologist. 22:503–e43. 2017. View Article : Google Scholar : PubMed/NCBI | |
Raynard C, Ma X, Huna A, Tessier N, Massemin A, Zhu K, Flaman JM, Moulin F, Goehrig D, Medard JJ, et al: NF-κB-dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast cancer cells. Aging Cell. 21:e136322022. View Article : Google Scholar : PubMed/NCBI | |
Li N, Liu Q, Han Y, Pei S, Cheng B, Xu J, Miao X, Pan Q, Wang H, Guo J, et al: ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun. 13:72812022. View Article : Google Scholar : PubMed/NCBI | |
Dushyanthen S, Cossigny DAF and Quan GMY: The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer. Cancer Growth Metastasis. 6:61–80. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Du X, Hu S and Huang Q: NF-κB-related metabolic gene signature predicts the prognosis and immunotherapy response in gastric cancer. Biomed Res Int. 2022:50925052022.PubMed/NCBI | |
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R and Johns TG: From signalling pathways to targeted therapies: Unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther. 8:4002023. View Article : Google Scholar : PubMed/NCBI | |
Ayala G, Yan J, Li R, Ding Y, Thompson TC, Mims MP, Hayes TG, MacDonnell V, Lynch RG, Frolov A, et al: Bortezomib-mediated inhibition of steroid receptor coactivator-3 degradation leads to activated Akt. Clin Cancer Res. 14:7511–7518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nunes JJ, Pandey SK, Yadav A, Goel S and Ateeq B: Targeting NF-kappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens. Neoplasia. 19:333–345. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Pang B, Zhou C, Han M, Gong J, Li Y and Jiang J: Prostate cancer-derived small extracellular vesicle proteins: The hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology. 21:4802023. View Article : Google Scholar : PubMed/NCBI | |
Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, et al: Methods to evaluate changes in mitochondrial structure and function in cancer. Cancers (Basel). 15:25642023. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Chen B, Zhang J, Sun Y, Yuan J, Niu X, Hu G, Chen Y, Xie Z, Deng Z, et al: Human ESC-sEVs alleviate age-related bone loss by rejuvenating senescent bone marrow-derived mesenchymal stem cells. J Extracell Vesicles. 9:18009712020. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Vidal L, Murdica V, Venegoni C, Pederzoli F, Bandini M, Necchi A, Salonia A and Alfano M: Causal contributors to tissue stiffness and clinical relevance in urology. Commun Biol. 4:10112021. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Liang M, Wu Y, Dou C, Xu J, Dong S and Luo F: Small extracellular vesicles deliver osteolytic effectors and mediate cancer-induced osteolysis in bone metastatic niche. J Extracell Vesicles. 10:e120682021. View Article : Google Scholar : PubMed/NCBI | |
Mongelli A, Atlante S, Barbi V, Bachetti T, Martelli F, Farsetti A and Gaetano C: Treating senescence like cancer: Novel perspectives in senotherapy of chronic diseases. Int J Mol Sci. 21:79842020. View Article : Google Scholar : PubMed/NCBI | |
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E and Donadon M: Cellular senescence in liver cancer: How dying cells become ‘Zombie’ enemies. Biomedicines. 12:262023. View Article : Google Scholar : PubMed/NCBI | |
Du D, Tang X, Li Y, Gao Y, Chen R, Chen Q, Wen J, Wu T, Zhang Y, Lu H, et al: Senotherapy protects against Cisplatin-induced ovarian injury by removing senescent cells and alleviating DNA damage. Oxid Med Cell Longev. 2022:91446442022. View Article : Google Scholar : PubMed/NCBI | |
Gasek NS, Kuchel GA, Kirkland JL and Xu M: Strategies for targeting senescent cells in human disease. Nat Aging. 1:870–879. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang Q, Ni W, Ji G and Xu H: A strategy for the treatment of gastrointestinal cancer: Targeting tumor senescent cells. Front Mol Biosci. 10:11398402023. View Article : Google Scholar : PubMed/NCBI | |
Ramírez R, Ceprian N, Figuer A, Valera G, Bodega G, Alique M and Carracedo J: Endothelial senescence and the chronic vascular diseases: Challenges and therapeutic opportunities in atherosclerosis. J Pers Med. 12:2152022. View Article : Google Scholar : PubMed/NCBI | |
Fedorov VD, Themeli M and Sadelain M: PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 5:215ra1722013. View Article : Google Scholar : PubMed/NCBI | |
Arai S, Varkaris A, Nouri M, Chen S, Xie L and Balk SP: MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife. 9:e549542020. View Article : Google Scholar : PubMed/NCBI | |
Arai S, Jonas O, Whitman MA, Corey E, Balk SP and Chen S: Tyrosine kinase inhibitors increase MCL1 degradation and in combination with BCLXL/BCL2 inhibitors drive prostate cancer apoptosis. Clin Cancer Res. 24:5458–5470. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferraldeschi R, Welti J, Powers MV, Yuan W, Smyth T, Seed G, Riisnaes R, Hedayat S, Wang H, Crespo M, et al: Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res. 76:2731–2742. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slovin S, Hussain S, Saad F, Garcia J, Picus J, Ferraldeschi R, Crespo M, Flohr P, Riisnaes R, Lin C, et al: Pharmacodynamic and clinical results from a phase I/II study of the HSP90 Inhibitor Onalespib in combination with abiraterone acetate in prostate cancer. Clin Cancer Res. 25:4624–4633. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Yang F, Chen D, Zhao Q, Chen D, Ping H and Xing N: Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int J Biol Sci. 16:1121–1134. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ward AB, Mir H, Kapur N, Gales DN, Carriere PP and Singh S: Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol. 16:1082018. View Article : Google Scholar : PubMed/NCBI | |
Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, et al: Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One. 7:e475162012. View Article : Google Scholar : PubMed/NCBI | |
Zhang DF, Yang ZC, Chen JQ, Jin XX, Qiu YD, Chen XJ, Shi HY, Liu ZG, Wang MS, Liang G and Zheng XH: Piperlongumine inhibits migration and proliferation of castration-resistant prostate cancer cells via triggering persistent DNA damage. BMC Complement Med Ther. 21:1952021. View Article : Google Scholar : PubMed/NCBI | |
Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, Tulin A, Uzzo RG and Kolenko VM: Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer. 110:899–907. 2014. View Article : Google Scholar : PubMed/NCBI | |
Golovine KV, Makhov PB, Teper E, Kutikov A, Canter D, Uzzo RG and Kolenko VM: Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells. Prostate. 73:23–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Jin Z and Lu X: Differential targeting of Gr-MDSCs, T cells and prostate cancer cells by dactolisib and dasatinib. Int J Mol Sci. 21:23372020. View Article : Google Scholar : PubMed/NCBI | |
Araujo JC, Poblenz A, Corn P, Parikh NU, Starbuck MW, Thompson JT, Lee F, Logothetis CJ and Darnay BG: Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation. Cancer Biol Ther. 8:2153–2159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cuyàs E, Verdura S, Llorach-Pares L, Fernández-Arroyo S, Luciano-Mateo F, Cabré N, Stursa J, Werner L, Martin-Castillo B, Viollet B, et al: Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging Cell. 17:e127722018. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Zheng Y, Yao Y, Jia R, Ge S and Zhuang A: Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J Transl Med. 21:4032023. View Article : Google Scholar : PubMed/NCBI | |
Wang ZS, Huang HR, Zhang LY, Kim S, He Y, Li DL, Farischon C, Zhang K, Zheng X, Du ZY and Goodin S: Mechanistic study of inhibitory effects of metformin and atorvastatin in combination on prostate cancer cells in vitro and in vivo. Biol Pharm Bull. 40:1247–1254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Lu Y, Wang J, Koch AE, Zhang J and Taichman RS: Retraction: CXCR6 Induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res. 82:3406. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wu D, He Y, Li L, Liu S, Lu J, Gui H, Wang Y, Tao Y, Wang H, et al: Rapamycin inhibits AR signaling pathway in prostate cancer by interacting with the FK1 domain of FKBP51. Biochem Biophys Rep. 23:1007782020.PubMed/NCBI | |
Shorning BY, Dass MS, Smalley MJ and Pearson HB: The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int J Mol Sci. 21:45072020. View Article : Google Scholar : PubMed/NCBI | |
Lo U, Chen Y, Cen J, Deng S, Luo J, Zhau H, Ho L, Lai CH, Mu P, Chung LWK and Hsieh JT: The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med. 12:e9782022. View Article : Google Scholar : PubMed/NCBI | |
Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP and Ramkumar V: Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One. 7:e516552012. View Article : Google Scholar : PubMed/NCBI | |
Fenner A: Prostate cancer: Resveratrol inhibits the AR. Nat Rev Urol. 14:642. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, et al: Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 47:446–456. 2019. View Article : Google Scholar : PubMed/NCBI | |
Di Micco R, Krizhanovsky V, Baker D and d'Adda di Fagagna F: Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 22:75–95. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kaur G, Sundar IK and Rahman I: p16-3MR: A novel model to study cellular senescence in cigarette smoke-induced lung injuries. Int J Mol Sci. 22:48342021. View Article : Google Scholar : PubMed/NCBI | |
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL and van Deursen JM: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479:232–236. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song P, Duan JL, Ding J, Liu JJ, Fang ZQ, Xu H, Li ZW, Du W, Xu M, Ling YW, et al: Cellular senescence primes liver fibrosis regression through Notch-EZH2. MedComm (2020). 4:e3462023.PubMed/NCBI | |
Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, et al: A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther. Apr 6–2024.(Epub ahead of print). View Article : Google Scholar | |
Zhan D, Ma D, Wei S, Lal B, Fu Y, Eberhart C, Laterra J, Ying M, Li Y, Meeker A, et al: Monoallelic IDH1 R132H mutation mediates glioma cell response to anticancer therapies via induction of senescence. Mol Cancer Res. 19:1878–1888. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen WC, Chang TC, Chou HH, Cheng MH, Hong JJ, Hsieh YS and Cheng CM: Peritoneal fluid analysis of advanced ovarian cancers after hyperthermic intraperitoneal chemotherapy. Int J Mol Sci. 24:97482023. View Article : Google Scholar : PubMed/NCBI | |
D'Aguanno S and Del Bufalo D: Inhibition of Anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: Current overview in cancer. Cells. 9:12872020. View Article : Google Scholar : PubMed/NCBI | |
Harrison CN, Garcia JS, Somervaille TCP, Foran JM, Verstovsek S, Jamieson C, Mesa R, Ritchie EK, Tantravahi SK, Vachhani P, et al: Addition of Navitoclax to ongoing Ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: Phase II safety and efficacy. J Clin Oncol. 40:1671–1680. 2022. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zhang X, Chang J, Kim HN, Zhang P, Wang Y, Khan S, Liu X, Zhang X, Lv D, et al: Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 11:19962020. View Article : Google Scholar : PubMed/NCBI | |
Ferraldeschi R, Welti J, Powers MV, Yuan W, Smyth T, Seed G, Riisnaes R, Hedayat S, Wang H, Crespo M, et al: Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res. 76:2731–2742. 2016. View Article : Google Scholar : PubMed/NCBI | |
Colucci M, Zumerle S, Bressan S, Gianfanti F, Troiani M, Valdata A, D'Ambrosio M, Pasquini E, Varesi A, Cogo F, et al: Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells. Cancer Cell. 42:646–661.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chi KN, Gleave ME, Klasa R, Murray N, Bryce C, Lopes de Menezes DE, D'Aloisio S and Tolcher AW: A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res. 7:3920–3927. 2001.PubMed/NCBI | |
Tolcher AW, Kuhn J, Schwartz G, Patnaik A, Hammond LA, Thompson I, Fingert H, Bushnell D, Malik S, Kreisberg J, et al: A Phase I pharmacokinetic and biological correlative study of oblimersen sodium (genasense, g3139), an antisense oligonucleotide to the bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res. 10:5048–5057. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stein MN, Goodin S, Gounder M, Gibbon D, Moss R, Portal D, Lindquist D, Zhao Y, Takebe N, Tan A, et al: A phase I study of AT-101, a BH3 mimetic, in combination with paclitaxel and carboplatin in solid tumors. Invest New Drugs. 38:855–865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Osada T, Crosby EJ, Kaneko K, Snyder JC, Ginzel JD, Acharya CR, Yang XY, Polascik TJ, Spasojevic I, Nelson RC, et al: HSP90-specific nIR Probe identifies aggressive prostate cancers: Translation from preclinical models to a human phase I study. Mol Cancer Ther. 21:217–226. 2022. View Article : Google Scholar : PubMed/NCBI | |
Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S, Barton KD, Bizzell E, Totten KMC, Campbell JL, et al: Considerations for the use of phage therapy in clinical practice. Antimicrob Agents Chemother. 66:e02071212022. View Article : Google Scholar : PubMed/NCBI | |
Kolodkin-Gal D, Roitman L, Ovadya Y, Azazmeh N, Assouline B, Schlesinger Y, Kalifa R, Horwitz S, Khalatnik Y, Hochner-Ger A, et al: Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut. 71:345–355. 2022. View Article : Google Scholar : PubMed/NCBI | |
Spetsieris N, Boukovala M, Weldon JA, Tsikkinis A, Hoang A, Aparicio A, Tu SM, Araujo JC, Zurita AJ, Corn PG, et al: A Phase 2 trial of abiraterone followed by randomization to addition of dasatinib or sunitinib in men with metastatic castration-resistant prostate cancer. Clin Genitourin Cancer. 19:22–31.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rossi M, Anerillas C, Idda ML, Munk R, Shin CH, Donega S, Tsitsipatis D, Herman AB, Martindale JL, Yang X, et al: Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. Elife. 12:e842382023. View Article : Google Scholar : PubMed/NCBI | |
Chaib S, Tchkonia T and Kirkland JL: Cellular senescence and senolytics: The path to the clinic. Nat Med. 28:1556–1568. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ and Robbins PD: The clinical potential of senolytic drugs. J Am Geriatr Soc. 65:2297–2301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X and Sun X: Cellular rejuvenation: Molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther. 8:1162023. View Article : Google Scholar : PubMed/NCBI | |
Kreienkamp R, Graziano S, Coll-Bonfill N, Bedia-Diaz G, Cybulla E, Vindigni A, Dorsett D, Kubben N, Batista LFZ and Gonzalo S: A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Rep. 22:2006–2015. 2018. View Article : Google Scholar : PubMed/NCBI | |
Krtolica A, Parrinello S, Lockett S, Desprez PY and Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc Natl Acad Sci USA. 98:12072–12077. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Jin H, Jochems F, Wang S, Lieftink C, Martinez IM, De Conti G, Edwards F, de Oliveira RL, Schepers A, et al: cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis. Nat Cancer. 3:1284–1299. 2022. View Article : Google Scholar : PubMed/NCBI |