Cinnamaldehyde: Pharmacokinetics, anticancer properties and therapeutic potential (Review)
- Authors:
- Ruxia Han
- Xueying Li
- Xinfu Gao
- Guangyao Lv
-
Affiliations: School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China, School of Health, Binzhou Polytechnic, Binzhou, Shandong 256600, P.R. China, Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China - Published online on: July 8, 2024 https://doi.org/10.3892/mmr.2024.13287
- Article Number: 163
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dorri M, Hashemitabar S and Hosseinzadeh H: Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem Toxicol. 41:338–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mishra A, Bhatti R, Singh A and Singh Ishar MP: Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta medica. 76:412–417. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ustaoglu E, Turkoglu Z, Ulgen OA, Caytemel C and Agirgol S: Anti-inflammatory effect of cinnamaldehyde in a mouse model of 2,4-dinitrofluorobenzene-induced atopic dermatitis. Indian J Dermatol. 68:170–177. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tanaka Y, Uchi H and Furue M: Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci. 96:151–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Qiu L, Zhao G, Xu J and Wang S: Influence of cinnamaldehyde on viral myocarditis in mice. Am J Med Sci. 340:114–120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Friedman M: Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods. J Agric Food Chem. 65:10406–10423. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Wang S, Luo X, Xie Y and Shi X: Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thromb Res. 119:337–342. 2007. View Article : Google Scholar : PubMed/NCBI | |
Subash Babu P, Prabuseenivasan S and Ignacimuthu S: Cinnamaldehyde-a potential antidiabetic agent. Phytomedicine. 14:15–22. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tung YT, Huang CC, Ho ST, Kuo YH, Lin CC, Lin CT and Wu JH: Bioactive phytochemicals of leaf essential oils of Cinnamomum osmophloeum prevent lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced acute hepatitis in mice. J Agric Food Chem. 59:8117–8123. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Sun W, Huang L, Wu L, Hou Y, Qin L and Liu T: Effect of cinnamaldehyde on glucose metabolism and vessel function. Med Sci Monit. 23:3844–3853. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuru Bektaşoğlu P, Koyuncuoğlu T, Demir D, Sucu G, Akakın D, Peker Eyüboğlu İ, Yüksel M, Çelikoğlu E, Yeğen BÇ and Gürer B: Neuroprotective effect of cinnamaldehyde on secondary brain injury after traumatic brain injury in a rat model. World Neurosurg. 153:e392–e402. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kwon HK, Hwang JS, So JS, Lee CG, Sahoo A, Ryu JH, Jeon WK, Ko BS, Lee SH, Park ZY and Im SH: Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. BMC Cancer. 10:3922010. View Article : Google Scholar : PubMed/NCBI | |
Nile A, Shin J, Shin J, Park GS, Lee S, Lee JH, Lee KW, Kim BG, Han SG, Saini RK and Oh JW: Cinnamaldehyde-Rich cinnamon extract induces cell death in colon cancer cell lines HCT 116 and HT-29. Int J Mol Sci. 24:81912023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Wang C, Bai J, Zeng Z, Yang X, Wei B and Yang Z: Cinnamaldehyde-modified chitosan hybrid nanoparticles for DOX delivering to produce synergistic anti-tumor effects. Front Bioeng Biotechnol. 10:9680652022. View Article : Google Scholar : PubMed/NCBI | |
Fang Q, Xu X, Yang L, Xue Y, Cheng X, Wang X and Tang R: Self-assembled 5-fluorouracil-cinnamaldehyde nanodrugs for greatly improved chemotherapy in vivo. J Biomater Appl. 36:592–604. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yao J, Guan Z, Wu H, Cheng H, Yan G and Tang R: pH-triggered small molecule Nano-prodrugs emulsified from tryptamine-cinnamaldehyde twin drug for targeted synergistic glioma therapy. Colloids Surf B Biointerfaces. 207:1120522021. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Jia X, Li X, He M, Hao JN, Guan M, Mao Y, Cao Y, Dai B and Li Y: One-pot fabrication of a polydopamine-based nanoplatform for GSH triggered trimodal ROS-amplification for cancer therapy. Biomater Sci. 10:4208–4217. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tu Y, Xiao X, Dong Y, Li J, Liu Y, Zong Q and Yuan Y: Cinnamaldehyde-based poly(thioacetal): A ROS-awakened self-amplifying degradable polymer for enhanced cancer immunotherapy. Biomaterials. 289:1217952022. View Article : Google Scholar : PubMed/NCBI | |
Peters MM and Caldwell J: Studies on trans-cinnamaldehyde. 1. The influence of dose size and sex on its disposition in the rat and mouse. Food Chem Toxicol. 32:869–876. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hong SH, Ismail IA, Kang SM, Han DC and Kwon BM: Cinnamaldehydes in cancer chemotherapy. Phytother Res. 30:754–767. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang LQ, Zhang ZG, Fu Y and Xu Y: Research progress of trans-cinnamaldehyde pharmacological effects. Zhongguo Zhong Yao Za Zhi. 40:4568–4572. 2015.(In Chinese). PubMed/NCBI | |
Zinn S, Betz T, Medcraft C and Schnell M: Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy. Phys Chem Chem Phys. 17:16080–16085. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bickers D, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Smith RL and Tagami H; RIFM expert panel, : A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients. Food Chem Toxicol. 43:799–836. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vasconcelos NG, Croda J and Simionatto S: Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog. 120:198–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Xie Y, Yang Q, Cao Y, Tu H, Cao W and Wang S: Pharmacokinetic study of cinnamaldehyde in rats by GC-MS after oral and intravenous administration. J Pharm Biomed Anal. 89:150–157. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yang Q, Xie Y, Sun J, Tu H, Cao W and Wang S: Simultaneous determination of cinnamaldehyde and its metabolite in rat tissues by gas chromatography-mass spectrometry. Biomed Chromatogr. 29:182–187. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yuan J, Yang Q, Xie Y, Cao W and Wang S: Cinnamaldehyde in a novel intravenous submicrometer emulsion: Pharmacokinetics, tissue distribution, antitumor efficacy, and toxicity. J Agric Food Chem. 63:6386–6392. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alqahtani MS, Kazi M, Alsenaidy MA and Ahmad MZ: Advances in oral drug delivery. Front Pharmacol. 12:6184112021. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Meng Y, Xu Y and Chu X: Improved uptake and bioavailability of cinnamaldehyde via solid lipid nanoparticles for oral delivery. Pharm Dev Technol. 27:1038–1048. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Cao W, Xia M, Tian C, Wu W, Cai Y and Chu X: Self-Emulsifying drug delivery system enhances tissue distribution of cinnamaldehyde by altering the properties of the mucus layer. AAPS PharmSciTech. 23:2612022. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Liu L, Xia M, Tian C, Wu W, Dong B and Chu X: SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models. Int J Pharm. 614:1214612022. View Article : Google Scholar : PubMed/NCBI | |
Dong B, Chen J, Cai Y, Wu W and Chu X: In vitro and in vivo evaluation of cinnamaldehyde Microemulsion-Mucus interaction. J Food Biochem. 46:e143072022. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Weiderpass E and Soerjomataram I: The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 127:3029–3030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng RS, Chen R, Han BF, Wang SM, Li L, Sun KX, Zeng HM, Wei WW and He J: Cancer incidence and mortality in China, 2022. Zhonghua Zhong Liu Za Zhi. 46:221–231. 2024.(In Chinese). PubMed/NCBI | |
Luo G, Zhang Y, Etxeberria J, Arnold M, Cai X, Hao Y and Zou H: Projections of lung cancer incidence by 2035 in 40 countries worldwide: Population-based study. JMIR Public Health Surveill. 9:e436512023. View Article : Google Scholar : PubMed/NCBI | |
Imai T, Yasuhara K, Tamura T, Ueda M, Hirose M and Mitsumori K: Inhibitory effects of cinnamaldehyde on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung carcinogenesis in rasH2 mice. Cancer Lett. 175:9–16. 2002. View Article : Google Scholar : PubMed/NCBI | |
Meng M, Geng S, Du Z, Yao J, Zheng Y, Li Z, Zhang Z, Li J, Duan Y and Du G: Berberine and cinnamaldehyde together prevent lung carcinogenesis. Oncotarget. 8:76385–76397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tian F, Yu CT, Ye WD and Wang Q: Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commun. 493:1260–1266. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Zhuang Y, Jiang S, Tian F, Teng Y, Chen X, Zheng P, Liu S, Zhou J, Wu J, et al: Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int J Biochem Cell Biol. 84:58–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park J and Baek SH: Combination therapy with cinnamaldehyde and hyperthermia induces apoptosis of A549 Non-Small cell lung carcinoma cells via regulation of reactive oxygen species and mitogen-activated protein kinase family. Int J Mol Sci. 21:62292020. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Wu J, Lu C, Yan T, Qian Y, Shen H, Zhao Y, Wang J, Kong P and Zhang X: Systematic Transcriptome analysis reveals the inhibitory function of cinnamaldehyde in non-small cell lung cancer. Front Pharmacol. 11:6110602020. View Article : Google Scholar : PubMed/NCBI | |
Qu R, Ma Y, Zhang Z and Fu W: Increasing burden of colorectal cancer in China. Lancet Gastroenterol Hepatol. 7:7002022. View Article : Google Scholar : PubMed/NCBI | |
Sargent DJ, Wieand HS, Haller DG, Gray R, Benedetti JK, Buyse M, Labianca R, Seitz JF, O'Callaghan CJ, Francini G, et al: Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: Individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 23:8664–8670. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jeong HW, Han DC, Son KH, Han MY, Lim JS, Ha JH, Lee CW, Kim HM, Kim HC and Kwon BM: Antitumor effect of the cinnamaldehyde derivative CB403 through the arrest of cell cycle progression in the G2/M phase. Biochem Pharmacol. 65:1343–1350. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee CW, Lee SH, Lee JW, Ban JO, Lee SY, Yoo HS, Jung JK, Moon DC, Oh KW and Hong JT: 2-hydroxycinnamaldehyde inhibits SW620 colon cancer cell growth through AP-1 inactivation. J Pharmacol Sci. 104:19–28. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cho SY, Lee HJ, Lee HJ, Jung DB, Kim H, Sohn EJ, Kim B, Jung JH, Kwon BM and Kim SH: Activation of AMP-Activated protein kinase α and extracelluar signal-regulated kinase mediates CB-PIC-Induced apoptosis in hypoxic SW620 colorectal cancer cells. Evid Based Complement Alternat Med. 2013:9743132013. View Article : Google Scholar : PubMed/NCBI | |
Yun M, Lee D, Park MN, Kim EO, Sohn EJ, Kwon BM and Kim SH: Cinnamaldehyde derivative (CB-PIC) sensitizes chemo-resistant cancer cells to drug-induced apoptosis via suppression of MDR1 and its upstream STAT3 and AKT signalling. Cell Physiol Biochem. 35:1821–1830. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Liu SL, Qi MH and Zou X: Cinnamaldehyde/chemotherapeutic Agents interaction and drug-metabolizing genes in colorectal cancer. Mol Med Rep. 9:669–676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Long M, Tao S, Rojo de la Vega M, Jiang T, Wen Q, Park SL, Zhang DD and Wondrak GT: Nrf2-dependent suppression of azoxymethane/dextran sulfate sodium-induced colon carcinogenesis by the cinnamon-derived dietary factor cinnamaldehyde. Cancer Prev Res (Phila). 8:444–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dong P, Konno Y, Watari H, Hosaka M, Noguchi M and Sakuragi N: The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med. 12:2312014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Teng Y, Liu S, Wang Z, Chen Y, Zhang Y, Xi S, Xu S, Wang R and Zou X: Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol Rep. 35:1501–1510. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Lei W, Shen F, Wang M, Li L and Chang J: Cinnamaldehyde induces apoptosis and enhances anti-colorectal cancer activity via covalent binding to HSPD1. Phytother Res. Apr 22–2023.doi: 10.1002/ptr.7840 (Epub ahead of print). View Article : Google Scholar | |
Nguyen HA and Kim SA: 2′-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression. Int J Oncol. 50:283–289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu CE, Zhuang YW, Zhou JY, Liu SL, Wang RP and Shu P: Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp Cell Res. 383:1115002019. View Article : Google Scholar : PubMed/NCBI | |
Kosari F, Taheri M, Moradi A, Hakimi Alni R and Alikhani MY: Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC Cancer. 20:2672020. View Article : Google Scholar : PubMed/NCBI | |
Petrocelli G, Farabegoli F, Valerii MC, Giovannini C, Sardo A and Spisni E: Molecules present in plant essential oils for prevention and treatment of colorectal cancer (CRC). Molecules. 26:8852021. View Article : Google Scholar : PubMed/NCBI | |
Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, Poddar P, Dhole SD and Kaul-Ghanekar R: Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLoS One. 9:e1073152014. View Article : Google Scholar : PubMed/NCBI | |
Rad SK, Kanthimathi MS, Abd Malek SN, Lee GS, Looi CY and Wong WF: Cinnamomum cassia suppresses Caspase-9 through stimulation of AKT1 in MCF-7 cells but not in MDA-MB-231 cells. PLoS One. 10:e01452162015. View Article : Google Scholar : PubMed/NCBI | |
Chiang YF, Chen HY, Huang KC, Lin PH and Hsia SM: Dietary antioxidant trans-cinnamaldehyde reduced Visfatin-induced breast cancer progression: In vivo and in vitro study. Antioxidants (Basel, Switzerland). 8:6252019.PubMed/NCBI | |
Liu Y, An T, Wan D, Yu B, Fan Y and Pei X: Targets and mechanism used by cinnamaldehyde, the main active ingredient in cinnamon, in the treatment of breast cancer. Front Pharmacol. 11:5827192020. View Article : Google Scholar : PubMed/NCBI | |
Kubatka P, Kello M, Kajo K, Samec M, Jasek K, Vybohova D, Uramova S, Liskova A, Sadlonova V, Koklesova L, et al: Chemopreventive and therapeutic efficacy of Cinnamomum zeylanicum L. bark in experimental breast carcinoma: Mechanistic in vivo and in vitro analyses. Molecules. 25:13992020. View Article : Google Scholar : PubMed/NCBI | |
Dong K, Zhao ZZ, Kang J, Lin LR, Chen WT, Liu JX, Wu XL and Lu TL: Cinnamaldehyde and Doxorubicin Co-Loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int J Nanomedicine. 15:10285–10304. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kuo YT, Liu CH, Wong SH, Pan YC and Lin LT: Small molecules baicalein and cinnamaldehyde are potentiators of measles virus-induced breast cancer oncolysis. Phytomedicine. 89:1536112021. View Article : Google Scholar : PubMed/NCBI | |
Schuster C, Wolpert N, Moustaid-Moussa N and Gollahon LS: Combinatorial effects of the natural products arctigenin, chlorogenic acid, and cinnamaldehyde commit oxidation assassination on breast cancer cells. Antioxidants (Basel). 11:5912022. View Article : Google Scholar : PubMed/NCBI | |
Yao P, Wang X, Wang Q, Dai Q, Peng Y, Yuan Q, Mou N, Lv S, Weng B, Wang Y and Sun F: Cyclic RGD-functionalized pH/ROS Dual-responsive nanoparticle for targeted breast cancer therapy. Pharmaceutics. 15:18272023. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi H: Liver cancer 2.0. Int J Mol Sci. 24:172752023. View Article : Google Scholar : PubMed/NCBI | |
Wu SJ, Ng LT and Lin CC: Effects of vitamin E on the cinnamaldehyde-induced apoptotic mechanism in human PLC/PRF/5 cells. Clin Exp Pharmacol Physiol. 31:770–776. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moon EY, Lee MR, Wang AG, Lee JH, Kim HC, Kim HM, Kim JM, Kwon BM and Yu DY: Delayed occurrence of H-ras12V-induced hepatocellular carcinoma with long-term treatment with cinnamaldehydes. Eur J Pharmacol. 530:270–275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang TC, Chung YL, Wu ML and Chuang SM: Cinnamaldehyde enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression in HepG2 cells. J Agric Food Chem. 59:5164–5171. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ng LT and Wu SJ: Antiproliferative activity of cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 cells. Evid Based Complement Alternat Med. 2011:4921482011. View Article : Google Scholar : PubMed/NCBI | |
Lin LT, Tai CJ, Chang SP, Chen JL, Wu SJ and Lin CC: Cinnamaldehyde-induced apoptosis in human hepatoma PLC/PRF/5 cells involves the mitochondrial death pathway and is sensitive to inhibition by cyclosporin A and z-VAD-fmk. Anticancer Agents Med Chem. 13:1565–1574. 2013. View Article : Google Scholar : PubMed/NCBI | |
Perng DS, Tsai YH, Cherng J, Kuo CW, Shiao CC and Cherng JM: Discovery of a novel anti-cancer agent targeting both topoisomerase I and II in hepatocellular carcinoma Hep 3B cells in vitro and in vivo: Cinnamomum verum component 2-methoxycinnamaldehyde. J Drug Target. 24:624–634. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aly SM, Fetaih HA, Hassanin AAI, Abomughaid MM and Ismail AA: Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats. Anal Cell Pathol (Amst). 2019:98954852019.PubMed/NCBI | |
Kim H, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Jang E, Kim B and Kim SH: The antitumor effect of cinnamaldehyde derivative CB-PIC in hepatocellular carcinoma cells via inhibition of pyruvate and STAT3 signaling. Int J Mol Sci. 23:64612022. View Article : Google Scholar : PubMed/NCBI | |
Han L, Mei J, Ma J, Wang F, Gu Z, Li J, Zhang Z, Zeng Y, Lou X, Yao X, et al: Cinnamaldehyde induces endogenous apoptosis of the prostate cancer-associated fibroblasts via interfering the Glutathione-associated mitochondria function. Med Oncol. 37:912020. View Article : Google Scholar : PubMed/NCBI | |
Mei J, Ma J, Xu Y, Wang Y, Hu M, Ma F, Qin Z, Xue R and Tao N: Cinnamaldehyde treatment of prostate cancer-associated fibroblasts prevents their inhibitory effect on T cells through Toll-Like receptor 4. Drug Des Devel Ther. 14:3363–3372. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Linder S and Bazzaro M: Drug development targeting the ubiquitin-proteasome system (UPS) for the treatment of human cancers. Cancers (Basel). 12:9022020. View Article : Google Scholar : PubMed/NCBI | |
Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, Thurow N, Ward MW, Villunger A, Strasser A, Kögel D and Prehn JH: Apoptosis induced by proteasome inhibition in cancer cells: Predominant role of the p53/PUMA pathway. Oncogene. 26:1681–1692. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan S and Ismail A: Aromatic monophenols from cinnamon bark act as proteasome inhibitors by upregulating ER stress, suppressing FoxM1 expression, and inducing apoptosis in prostate cancer cells. Phytother Res. 35:5781–5794. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan S, Dhaware M, Sudharma AA, Mullapudi SV, Siginam SR, Gogulothu R, Mir IA and Ismail A: Chemopreventive effect of cinnamon and its bioactive compounds in a rat model of premalignant prostate carcinogenesis. Cancer Prev Res (Phila). 16:139–151. 2023. View Article : Google Scholar : PubMed/NCBI | |
Moon KH and Pack MY: Cytotoxicity of cinnamic aldehyde on leukemia L1210 cells. Drug Chem Toxicol. 6:521–535. 1983. View Article : Google Scholar : PubMed/NCBI | |
Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J and Lee KT: Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett. 196:143–152. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang JH, Liu LQ, He YL, Kong WJ and Huang SA: Cytotoxic effect of trans-cinnamaldehyde on human leukemia K562 cells. Acta Pharmacol Sin. 31:861–866. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schoene NW, Kelly MA, Polansky MM and Anderson RA: A polyphenol mixture from cinnamon targets p38 MAP kinase-regulated signaling pathways to produce G2/M arrest. J Nutr Biochem. 20:614–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu LQ, Liu ZL, Wang X, Cui HY, Jin MD, Wang DY and Huang SA: Mechanism of cinnamic aldehyde-inducing apoptosis of chronic myeloid Leukemic cells in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 19:617–620. 2011.(In Chinese). PubMed/NCBI | |
Kim JE, Son JE, Jeong H, Joon Kim D, Seo SK, Lee E, Lim TG, Kim JR, Chen H, Bode AM, et al: A Novel Cinnamon-Related natural product with Pim-1 inhibitory activity inhibits leukemia and skin cancer. Cancer Res. 75:2716–2728. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR Jr, Yang DH and Chen ZS: Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. 41:1–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
Farokhzad OC and Langer R: Impact of nanotechnology on drug delivery. ACS Nano. 3:16–20. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liou GY and Storz P: Reactive oxygen species in cancer. Free Radic Res. 44:479–496. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong K, Yang C, Yan Y, Wang P, Sun Y, Wang K, Lu T, Chen Q, Zhang Y, Xing J and Dong Y: Investigation of the intracellular oxidative stress amplification, safety and anti-tumor effect of a kind of novel redox-responsive micelle. J Mater Chem B. 6:1105–1117. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bansal A and Simon MC: Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 217:2291–2298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Ding X, Xu X, Lai H, Zeng Z, Shan T, Zhang T, Chen M, Huang Y, Huang Z, et al: Tumor-targeted hyaluronic acid-based oxidative stress nanoamplifier with ROS generation and GSH depletion for antitumor therapy. Int J Biol Macromol. 207:771–783. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Wang R, Wang X, Duan X, Yan X, Liu C and Tian W: Hyaluronic acid coated Nano-particles for H2O2-elevation augmented Photo-/Chemodynamic therapy. Int J Biol Macromol. 245:1255232023. View Article : Google Scholar : PubMed/NCBI | |
National Toxicology Program, . NTP toxicology and carcinogenesis studies of trans-cinnamaldehyde (CAS No. 14371-10-9) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 2004:1–281. 2004.PubMed/NCBI | |
Hooth MJ, Sills RC, Burka LT, Haseman JK, Witt KL, Orzech DP, Fuciarelli AF, Graves SW, Johnson JD and Bucher JR: Toxicology and carcinogenesis studies of microencapsulated trans-cinnamaldehyde in rats and mice. Food Chem Toxicol. 42:1757–1768. 2004. View Article : Google Scholar : PubMed/NCBI | |
Anand P, Murali KY, Tandon V, Murthy PS and Chandra R: Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact. 186:72–81. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kiwamoto R, Ploeg D, Rietjens IM and Punt A: Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling. Toxicol In Vitro. 31:114–125. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mao M, Zheng W, Deng B, Wang Y, Zhou D, Shen L, Niku W and Zhang N: Cinnamaldehyde alleviates doxorubicin-induced cardiotoxicity by decreasing oxidative stress and ferroptosis in cardiomyocytes. PLoS One. 18:e02921242023. View Article : Google Scholar : PubMed/NCBI | |
Abd El Salam ASG, Samaha MM and Abd Elrazik NA: Cytoprotective effects of cinnamaldehyde and adipoRon against cyclophosphamide-induced cardio-renal toxicity in rats: Insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol. 124:1110442023. View Article : Google Scholar : PubMed/NCBI | |
Bae WY, Choi JS, Kim JE and Jeong JW: Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression. Biochem Pharmacol. 98:41–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
DeCaprio J and Kohl TO: Chromatin Immunoprecipitation. Cold Spring Harbor Protocols. 2020:0986652020. View Article : Google Scholar : PubMed/NCBI | |
Nakato R and Sakata T: Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods. 187:44–53. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hino S, Sato T and Nakao M: Chromatin immunoprecipitation sequencing (ChIP-seq) for detecting histone modifications and modifiers. Methods Mol Biol. 2577:55–64. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kumar P, Kiran S, Saha S, Su Z, Paulsen T, Chatrath A, Shibata Y, Shibata E and Dutta A: ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci Adv. 6:eaba24892020. View Article : Google Scholar : PubMed/NCBI |