1
|
Rayat Pisheh H, Ansari M and Eslami H: How
is mechanobiology involved in bone regenerative medicine? Tissue
Cell. 76:1018212022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dec P, Modrzejewski A and Pawlik A:
Existing and novel biomaterials for bone tissue engineering. Int J
Mol Sci. 24:5292022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li S, Liu J, Liu S, Jiao W and Wang X:
Chitosan oligosaccharides packaged into rat adipose mesenchymal
stem cells-derived extracellular vesicles facilitating cartilage
injury repair and alleviating osteoarthritis. J Nanobiotechnology.
19:3432021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li S, Tian X, Fan J, Tong H, Ao Q and Wang
X: Chitosans for tissue repair and organ three-dimensional (3D)
bioprinting. Micromachines (Basel). 10:7652019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yuan G, Li Z, Lin X, Li N and Xu R: New
perspective of skeletal stem cells. Biomater Transl. 3:280–294.
2022.PubMed/NCBI
|
6
|
Benayahu D: Mesenchymal stem cell
differentiation and usage for biotechnology applications: Tissue
engineering and food manufacturing. Biomater Transl. 3:17–23.
2022.PubMed/NCBI
|
7
|
Charbord P: Bone marrow mesenchymal stem
cells: Historical overview and concepts. Hum Gene Ther.
21:1045–1056. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang D, Cao H, Hua W, Gao L, Yuan Y, Zhou
X and Zeng Z: Mesenchymal stem cell-derived extracellular vesicles
for bone defect repair. membranes (basel). 12:7162022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li S, Liu J, Liu S, Jiao W and Wang X:
Mesenchymal stem cell-derived extracellular vesicles prevent the
development of osteoarthritis via the circHIPK3/miR-124-3p/MYH9
axis. J Nanobiotechnology. 19:1942021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin H, Sohn J, Shen H, Langhans MT and
Tuan RS: Bone marrow mesenchymal stem cells: Aging and tissue
engineering applications to enhance bone healing. Biomaterials.
203:96–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Delorme B, Nivet E, Gaillard J, Häupl T,
Ringe J, Devèze A, Magnan J, Sohier J, Khrestchatisky M, Roman FS,
et al: The human nose harbors a niche of olfactory ectomesenchymal
stem cells displaying neurogenic and osteogenic properties. Stem
Cells Dev. 19:853–866. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Patthey C, Schlosser G and Shimeld SM: The
evolutionary history of vertebrate cranial placodes-I: Cell type
evolution. Dev Biol. 389:82–97. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Diogo R, Kelly RG, Christiaen L, Levine M,
Ziermann JM, Molnar JL, Noden DM and Tzahor E: A new heart for a
new head in vertebrate cardiopharyngeal evolution. Nature.
520:466–473. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Achilleos A and Trainor PA: Neural crest
stem cells: Discovery, properties and potential for therapy. Cell
Res. 22:288–304. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Trainor PA: Craniofacial birth defects:
The role of neural crest cells in the etiology and pathogenesis of
Treacher Collins syndrome and the potential for prevention. Am J
Med Genet A. 52A:2984–2994. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Srinivasan A, Teo N, Poon KJ, Tiwari P,
Ravichandran A, Wen F, Teoh SH, Lim TC and Toh YC: Comparative
craniofacial bone regeneration capacities of mesenchymal stem cells
derived from human neural crest stem cells and bone marrow. ACS
Biomater Sci Eng. 7:207–221. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shi W, Zhang X, Bian L, Dai Y, Wang Z,
Zhou Y, Yu S, Zhang Z, Zhao P, Tang H, et al: Alendronate
crosslinked chitosan/polycaprolactone scaffold for bone defects
repairing. Int J Biol Macromol. 204:441–456. 2022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi W, Bian L, Wu Y, Wang Z, Dai Y, Zhou
Y, Meng P, Wang Q, Zhang Z, Zhao X, et al: Enhanced bone
regeneration using a ZIF-8-Loaded fibrin composite scaffold.
Macromol Biosci. 22:e21004162022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li S, Wang J, Han Y, Li X, Liu C, Lv Z,
Wang X, Tang X and Wang Z: Carbenoxolone inhibits mechanical
stress-induced osteogenic differentiation of mesenchymal stem cells
by regulating p38 MAPK phosphorylation. Exp Ther Med. 15:2798–2803.
2018.PubMed/NCBI
|
20
|
Yuan L, You H, Qin N and Zuo W:
Interleukin-10 modulates the metabolism and osteogenesis of human
dental pulp stem cells. Cell Reprogram. 23:270–276. 2021.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Su W, Wan Q, Huang J, Han L, Chen X, Chen
G, Olsen N, Zheng SG and Liang D: Culture medium from
TNF-α-stimulated mesenchymal stem cells attenuates allergic
conjunctivitis through multiple antiallergic mechanisms. J Allergy
Clin Immunol. 136:423–432.e8. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu H, Zhu X, Cao X, Chi A, Dai J, Wang Z,
Deng C and Zhang M: IL-1β-primed mesenchymal stromal cells exert
enhanced therapeutic effects to alleviate Chronic
Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity.
Stem Cell Res Ther. 12:5142021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vallés G, Bensiamar F, Maestro-Paramio L,
García-Rey E, Vilaboa N and Saldaña L: Influence of inflammatory
conditions provided by macrophages on osteogenic ability of
mesenchymal stem cells. Stem Cell Res Ther. 11:572020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mahon OR, Browe DC, Gonzalez-Fernandez T,
Pitacco P, Whelan IT, Von Euw S, Hobbs C, Nicolosi V, Cunningham
KT, Mills KHG, et al: Nano-particle mediated M2 macrophage
polarization enhances bone formation and MSC osteogenesis in an
IL-10 dependent manner. Biomaterials. 239:1198332020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shi W, Que Y, Lv D, Bi S, Xu Z, Wang D and
Zhang Z: Overexpression of TG2 enhances the differentiation of
ectomesenchymal stem cells into neuron-like cells and promotes
functional recovery in adult rats following spinal cord injury. Mol
Med Rep. 20:2763–2773. 2019.PubMed/NCBI
|
26
|
Shi W, Bian L, Lv D, Bi S, Dai Y, Yang K,
Lu H, Zhou H, Que Y, Wang D, et al: Enhanced neural differentiation
of neural stem cells by sustained release of Shh from TG2
gene-modified EMSC co-culture in vitro. Amino Acids. 53:11–22.
2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ouyang W, Rutz S, Crellin NK, Valdez PA
and Hymowitz SG: Regulation and functions of the IL-10 family of
cytokines in inflammation and disease. Annu Rev Immunol. 29:71–109.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fuchs S, Dohle E and Kirkpatrick CJ: Sonic
Hedgehog-mediated synergistic effects guiding angiogenesis and
osteogenesis. Vitam Horm. 88:491–506. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ma D, Yu H, Xu S, Wang H, Zhang X, Ning T
and Wu B: Stathmin inhibits proliferation and differentiation of
dental pulp stem cells via sonic hedgehog/Gli. J Cell Mol Med.
22:3442–3451. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bai Y, Zhang W, Hao L, Zhao Y, Tsai IC, Qi
Y and Xu Q: Acetyl-CoA-dependent ac4C acetylation promotes the
osteogenic differentiation of LPS-stimulated BMSCs. Int
Immunopharmacol. 133:1121242024. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang Z, Chen G, Wu H, Huang X, Xu R, Deng
F and Li Y: Ebselen restores peri-implantitis-induced osteogenic
inhibition via suppressing BMSCs ferroptosis. Exp Cell Res.
427:1136122023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Amarasekara DS, Kim S and Rho J:
Regulation of osteoblast differentiation by cytokine networks. Int
J Mol Sci. 22:28512021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park
KS, Zhylkibayev A, Medina A, Lin JH and Gorbatyuk M: The
endoplasmic reticulum: Homeostasis and crosstalk in retinal health
and disease. Prog Retin Eye Res. 98:1012312024. View Article : Google Scholar : PubMed/NCBI
|
34
|
Takebe H, Shalehin N, Hosoya A, Shimo T
and Irie K: Sonic hedgehog regulates bone fracture healing. Int J
Mol Sci. 21:6772020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Guan CC, Yan M, Jiang XQ, Zhang P, Zhang
XL, Li J, Ye DX and Zhang FQ: Sonic hedgehog alleviates the
inhibitory effects of high glucose on the osteoblastic
differentiation of bone marrow stromal cells. Bone. 45:1146–1152.
2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang Y, Zhang H, Hu Y, Jing Y, Geng Z and
Su J: Bone repair biomaterials: A perspective from
immunomodulation. Adv Funct Mater. 32:22086392022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L and Su
J: Cell unit-inspired natural nano-based biomaterials as versatile
building blocks for bone/cartilage regeneration. J
Nanobiotechnology. 21:2932023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang S, Zhao G, Mahotra M, Ma S, Li W,
Lee HW, Yu H, Sampathkumar K, Xie D, Guo J and Loo SCJ: Chitosan
nanofibrous scaffold with graded and controlled release of
ciprofloxacin and BMP-2 nanoparticles for the conception of bone
regeneration. Int J Biol Macromol. 254((Pt 2)): 1279122024.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu G, Ma M, Yang H, He W, Xie Y, Li J, Li
J, Zhao F and Zheng Y: Chitosan/polydopamine/octacalcium phosphate
composite microcarrier simulates natural bone components to induce
osteogenic differentiation of stem cells. Biomater Adv.
154:2136422023. View Article : Google Scholar : PubMed/NCBI
|