1
|
Sharif R: Overview of idiopathic pulmonary
fibrosis (IPF) and evidence-based guidelines. Am J Manag Care. 23
(11 Suppl):S176–S182. 2017.PubMed/NCBI
|
2
|
Zhang C, Zhang M, Ge S, Huang W, Lin X,
Gao J, Gong J and Shen L: Reduced m6A modification predicts
malignant phenotypes and augmented Wnt/PI3K-Akt signaling in
gastric cancer. Cancer Med. 8:4766–4781. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang C, Samanta D, Lu H, Bullen JW, Zhang
H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer
stem cell phenotype by HIF-dependent and ALKBH5-mediated
m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA.
113:E2047–E2056. 2016.PubMed/NCBI
|
4
|
Huang T and Zhou HF: A novel
5-methylcytosine- and immune-related prognostic signature is a
potential marker of idiopathic pulmonary fibrosis. Comput Math
Methods Med. 2022:16853842022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Han X, Wang M, Zhao YL, Yang Y and Yang
YG: RNA methylations in human cancers. Semin Cancer Biol.
75:97–115. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yi L, Wu G, Guo L, Zou X and Huang P:
Comprehensive analysis of the PD-L1 and immune infiltrates of
m6A RNA methylation regulators in head and neck squamous
cell carcinoma. Mol Ther Nucleic Acids. 21:299–314. 2020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Huang M, Zhang Y, Ou X, Wang C, Wang X,
Qin B, Zhang Q and Yu J, Zhang J and Yu J: m5C-related signatures
for predicting prognosis in cutaneous melanoma with machine
learning. J Oncol. 2021:61732062021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pan J, Huang Z and Xu Y: m5C RNA
methylation regulators predict prognosis and regulate the immune
microenvironment in lung squamous cell carcinoma. Front Oncol.
11:6574662021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mei L, Shen C, Miao R, Wang JZ, Cao MD,
Zhang YS, Shi LH, Zhao GH, Wang MH, Wu LS and Wei JF: RNA
methyltransferase NSUN2 promotes gastric cancer cell proliferation
by repressing p57Kip2 by an m5C-dependent
manner. Cell Death Dis. 11:2702020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun Z, Xue S, Zhang M, Xu H, Hu X, Chen S,
Liu Y, Guo M and Cui H: Aberrant NSUN2-mediated m5C
modification of H19 lncRNA is associated with poor differentiation
of hepatocellular carcinoma. Oncogene. 39:6906–6919. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan
X, Chen RX, Wei WS, Liu Y, Gao CC, et al: 5-Methylcytosine promotes
pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell
Biol. 21:978–990. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sun G, Ma S, Zheng Z, Wang X, Chen S,
Chang T, Liang Z, Jiang Y, Xu S and Liu R: Multi-omics analysis of
expression and prognostic value of NSUN members in prostate cancer.
Front Oncol. 12:9655712022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang Z, Pan J, Wang H, Du X, Xu Y, Wang Z
and Chen D: Prognostic significance and tumor immune
microenvironment heterogenicity of m5C RNA methylation regulators
in triple-negative breast cancer. Front Cell Dev Biol.
9:6575472021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou Y, Hu Z, Sun Q and Dong Y:
5-Methyladenosine regulators play a crucial role in development of
chronic hypersensitivity pneumonitis and idiopathic pulmonary
fibrosis. Sci Rep. 13:59412023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou Y, Fang C, Sun Q and Dong Y:
Relevance of RNA N6-methyladenosine regulators for pulmonary
fibrosis: Implications for chronic hypersensitivity pneumonitis and
idiopathic pulmonary fibrosis. Front Genet. 13:9391752022.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang JX, Huang PJ, Wang DP, Yang WY, Lu
J, Zhu Y, Meng XX, Wu X, Lin QH, Lv H, et al: m6A
modification regulates lung fibroblast-to-myofibroblast transition
through modulating KCNH6 mRNA translation. Mol Ther. 29:3436–3448.
2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Leek JT, Johnson WE, Parker HS, Jaffe AE
and Storey JD: The sva package for removing batch effects and other
unwanted variation in high-throughput experiments. Bioinformatics.
28:882–883. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng
Z, Zhu G, Qi J, Ma H, Nian H and Wang Y: RNA-seq analyses of
multiple meristems of soybean: Novel and alternative transcripts,
evolutionary and functional implications. BMC Plant Biol.
14:1692014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Eisen MB, Spellman PT, Brown PO and
Botstein D: Cluster analysis and display of genome-wide expression
patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Szklarczyk D, Gable AL, Nastou KC, Lyon D,
Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al:
Correction to ‘The STRING database in 2021: Customizable
protein-protein networks, and functional characterization of
user-uploaded gene/measurement sets’. Nucleic Acids Res.
49:108002021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang DW, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pan X, Jin X, Wang J, Hu Q and Dai B:
Placenta inflammation is closely associated with gestational
diabetes mellitus. Am J Transl Res. 13:4068–4079. 2021.PubMed/NCBI
|
26
|
Goeman JJ: L1 penalized estimation in the
Cox proportional hazards model. Biom J. 52:70–84. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Q and Liu X: Screening of feature
genes in distinguishing different types of breast cancer using
support vector machine. Onco Targets Ther. 8:2311–2317.
2015.PubMed/NCBI
|
28
|
Robin X, Turck N, Hainard A, Tiberti N,
Lisacek F, Sanchez JC and Müller M: pROC: An open-source package
for R and S+ to analyze and compare ROC curves. BMC Bioinformatics.
12:772011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin
K, Huang Q, Shi X, Ni Z, Ding N, et al: Tumor-infiltrating immune
cells Act as a marker for prognosis in colorectal cancer. Front
Immunol. 10:23682019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Percie du Sert N, Hurst V, Ahluwalia A,
Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl
U, et al: The ARRIVE guidelines 2.0: Updated guidelines for
reporting animal research. PLoS Biol. 18:e30004102020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen B, Khodadoust MS, Liu CL, Newman AM
and Alizadeh AA: Profiling tumor infiltrating immune cells with
CIBERSORT. Methods Mol Biol. 1711:243–259. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang X, Ren L, Yan X, Shan Y, Liu L, Zhou
J, Kuang Q, Li M, Long H and Lai W: Identification of
immune-related lncRNAs in periodontitis reveals regulation network
of gene-lncRNA-pathway-immunocyte. Int Immunopharmacol.
84:1066002020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jee AS, Sahhar J, Youssef P, Bleasel J,
Adelstein S, Nguyen M and Corte TJ: Review: Serum biomarkers in
idiopathic pulmonary fibrosis and systemic sclerosis associated
interstitial lung disease-frontiers and horizons. Pharmacol Ther.
202:40–52. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Harrell CR, Sadikot R, Pascual J,
Fellabaum C, Jankovic MG, Jovicic N, Djonov V, Arsenijevic N and
Volarevic V: Mesenchymal stem cell-based therapy of inflammatory
lung diseases: Current understanding and future perspectives. Stem
Cells Int. 2019:42369732019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Han M, Sun H, Zhou Q, Liu J, Hu J, Yuan W
and Sun Z: Effects of RNA methylation on Tumor angiogenesis and
cancer progression. Mol Cancer. 22:1982023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li D, Li K, Zhang W, Yang KW, Mu DA, Jiang
GJ, Shi RS and Ke D: The m6A/m5C/m1A regulated gene signature
predicts the prognosis and correlates with the immune status of
hepatocellular carcinoma. Front Immunol. 13:9181402022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li Y, Xue M, Deng X, Dong L, Nguyen LXT,
Ren L, Han L, Li C, Xue J, Zhao Z, et al: TET2-mediated mRNA
demethylation regulates leukemia stem cell homing and self-renewal.
Cell Stem Cell. 30:1072–1090.e10. 2023. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chrysanthou S, Senner CE, Woods L,
Fineberg E, Okkenhaug H, Burge S, Perez-Garcia V and Hemberger M: A
critical role of TET1/2 proteins in cell-cycle progression of
trophoblast stem cells. Stem Cell Reports. 10:1355–1368. 2018.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Tanjore H, Xu XC, Polosukhin VV, Degryse
AL, Li B, Han W, Sherrill TP, Plieth D, Neilson EG, Blackwell TS
and Lawson WE: Contribution of epithelial-derived fibroblasts to
bleomycin-induced lung fibrosis. Am J Respir Crit Care Med.
180:657–665. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Negreros M, Hagood JS, Espinoza CR,
Balderas-Martínez YI, Selman M and Pardo A: Transforming growth
factor beta 1 induces methylation changes in lung fibroblasts. PLoS
One. 14:e02235122019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Qin W, Spek CA, Scicluna BP, van der Poll
T and Duitman J: Myeloid DNA methyltransferase3b deficiency
aggravates pulmonary fibrosis by enhancing profibrotic macrophage
activation. Respir Res. 23:1622022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wei A, Gao Q, Chen F, Zhu X, Chen X, Zhang
L, Su X, Dai J, Shi Y and Cao W: Inhibition of DNA methylation
de-represses peroxisome proliferator-activated receptor-γ and
attenuates pulmonary fibrosis. Br J Pharmacol. 179:1304–1318. 2022.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu J, Liu L, Ma X, Cao X, Chen Y, Qu X,
Ji M, Liu H, Liu C, Qin X and Xiang Y: The role of DNA damage and
repair in idiopathic pulmonary fibrosis. Antioxidants (Basel).
11:22922022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Magrin L, Fanale D, Brando C, Fiorino A,
Corsini LR, Sciacchitano R, Filorizzo C, Dimino A, Russo A and
Bazan V: POLE, POLD1, and NTHL1: the last but not the least
hereditary cancer-predisposing genes. Oncogene. 40:5893–5901. 2021.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Hu Q, Qin Y, Ji S, Xu W, Liu W, Sun Q,
Zhang Z, Liu M, Ni Q, Yu X and Xu X: UHRF1 promotes aerobic
glycolysis and proliferation via suppression of SIRT4 in pancreatic
cancer. Cancer Lett. 452:226–236. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kostyrko K, Román M, Lee AG, Simpson DR,
Dinh PT, Leung SG, Marini KD, Kelly MR, Broyde J, Califano A, et
al: UHRF1 is a mediator of KRAS driven oncogenesis in lung
adenocarcinoma. Nat Commun. 14:39662023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Tanner L, Single AB, Bhongir RKV, Heusel
M, Mohanty T, Karlsson CAQ, Pan L, Clausson CM, Bergwik J, Wang K,
et al: Small-molecule-mediated OGG1 inhibition attenuates pulmonary
inflammation and lung fibrosis in a murine lung fibrosis model. Nat
Commun. 14:6432023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Heissenberger C, Liendl L, Nagelreiter F,
Gonskikh Y, Yang G, Stelzer EM, Krammer TL, Micutkova L, Vogt S,
Kreil DP, et al: Loss of the ribosomal RNA methyltransferase NSUN5
impairs global protein synthesis and normal growth. Nucleic Acids
Res. 47:11807–11825. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang XW, Wu LY, Liu HR, Huang Y, Qi Q,
Zhong R, Zhu L, Gao CF, Zhou L, Yu J and Wu HG: NSUN5 promotes
progression and predicts poor prognosis in hepatocellular
carcinoma. Oncol Lett. 24:4392022. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhou J, Kong YS, Vincent KM,
Dieters-Castator D, Bukhari AB, Glubrecht D, Liu RZ, Quilty D,
Findlay SD, Huang X, et al: RNA cytosine methyltransferase NSUN5
promotes protein synthesis and tumorigenic phenotypes in
glioblastoma. Mol Oncol. 17:1763–1783. 2023. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yang R, Liang X, Wang H, Guo M, Shen H,
Shi Y, Liu Q, Sun Y, Yang L and Zhan M: The RNA methyltransferase
NSUN6 suppresses pancreatic cancer development by regulating cell
proliferation. EBioMedicine. 63:1031952021. View Article : Google Scholar : PubMed/NCBI
|
53
|
Cui Y, Lv P and Zhang C: NSUN6 mediates
5-methylcytosine modification of METTL3 and promotes colon
adenocarcinoma progression. J Biochem Mol Toxicol. 38:e237492024.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang Y, Zhang L, Wu GR, Zhou Q, Yue H, Rao
LZ, Yuan T, Mo B, Wang FX, Chen LM, et al: MBD2 serves as a viable
target against pulmonary fibrosis by inhibiting macrophage M2
program. Sci Adv. 7:eabb60752021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Tao H, Yang JJ, Hu W, Shi KH, Deng ZY and
Li J: MeCP2 regulation of cardiac fibroblast proliferation and
fibrosis by down-regulation of DUSP5. Int J Biol Macromol.
82:68–75. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Cheng C, Wu Y, Xiao T, Xue J, Sun J, Xia
H, Ma H, Lu L, Li J, Shi A, et al: METTL3-mediated m6A
modification of ZBTB4 mRNA is involved in the smoking-induced EMT
in cancer of the lung. Mol Ther Nucleic Acids. 23:487–500. 2020.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Desch AN, Gibbings SL, Goyal R, Kolde R,
Bednarek J, Bruno T, Slansky JE, Jacobelli J, Mason R, Ito Y, et
al: Flow cytometric analysis of mononuclear phagocytes in
nondiseased human lung and lung-draining lymph nodes. Am J Respir
Crit Care Med. 193:614–626. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Shenderov K, Collins SL, Powell JD and
Horton MR: Immune dysregulation as a driver of idiopathic pulmonary
fibrosis. J Clin Invest. 131:e1432262021. View Article : Google Scholar : PubMed/NCBI
|
59
|
Hancock A, Armstrong L, Gama R and Millar
A: Production of interleukin 13 by alveolar macrophages from normal
and fibrotic lung. Am J Respir Cell Mol Biol. 18:60–65. 1998.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Rao LZ, Wang Y, Zhang L, Wu G, Zhang L,
Wang FX, Chen LM, Sun F, Jia S, Zhang S, et al: IL-24 deficiency
protects mice against bleomycin-induced pulmonary fibrosis by
repressing IL-4-induced M2 program in macrophages. Cell Death
Differ. 28:1270–1283. 2021. View Article : Google Scholar : PubMed/NCBI
|
61
|
Fichtner-Feigl S, Strober W, Kawakami K,
Puri RK and Kitani A: IL-13 signaling through the IL-13alpha2
receptor is involved in induction of TGF-beta1 production and
fibrosis. Nat Med. 12:99–106. 2006. View
Article : Google Scholar : PubMed/NCBI
|
62
|
Wang Z, Yin X, Ma M, Ge H, Lang B, Sun H,
He S, Fu Y, Sun Y, Yu X, et al: IP-10 Promotes latent HIV infection
in resting memory CD4+ T cells via LIMK-cofilin pathway.
Front Immunol. 12:6566632021. View Article : Google Scholar : PubMed/NCBI
|
63
|
Ren L, Chang YF, Jiang SH, Li XH and Cheng
HP: DNA methylation modification in Idiopathic pulmonary fibrosis.
Front Cell Dev Biol. 12:14163252024. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wajant H: Therapeutic targeting of CD70
and CD27. Expert Opin Ther Targets. 20:959–973. 2016. View Article : Google Scholar : PubMed/NCBI
|
65
|
Tran-Nguyen TK, Xue J, Feghali-Bostwick C,
Sciurba FC, Kass DJ and Duncan SR: CD70 activation decreases
pulmonary fibroblast production of extracellular matrix proteins.
Am J Respir Cell Mol Biol. 63:255–265. 2020. View Article : Google Scholar : PubMed/NCBI
|
66
|
Kawabe T, Matsushima M, Hashimoto N,
Imaizumi K and Hasegawa Y: CD40/CD40 ligand interactions in immune
responses and pulmonary immunity. Nagoya J Med Sci. 73:69–78.
2011.PubMed/NCBI
|
67
|
Wang JF, Wang YP, Xie J, Zhao ZZ, Gupta S,
Guo Y, Jia SH, Parodo J, Marshall JC and Deng XM: Upregulated PD-L1
delays human neutrophil apoptosis and promotes lung injury in an
experimental mouse model of sepsis. Blood. 138:806–810. 2021.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Wang Y, Kuai Q, Gao F, Wang Y, He M, Zhou
H, Han G, Jiang X, Ren S and Yu Q: Overexpression of TIM-3 in
macrophages aggravates pathogenesis of pulmonary fibrosis in mice.
Am J Respir Cell Mol Biol. 61:727–736. 2019. View Article : Google Scholar : PubMed/NCBI
|
69
|
Cui P, Liu Z, Wang G, Ma J, Qian Y, Zhang
F, Han C, Long Y, Li Y, Zheng X, et al: Risk factors for
pneumonitis in patients treated with anti-programmed death-1
therapy: A case-control study. Cancer Med. 7:4115–4120. 2018.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Zhang Q, Tang L, Zhou Y, He W and Li W:
Immune checkpoint inhibitor-associated pneumonitis in non-small
cell lung cancer: Current understanding in characteristics,
diagnosis, and management. Front Immunol. 12:6639862021. View Article : Google Scholar : PubMed/NCBI
|
71
|
Esensten JH, Helou YA, Chopra G, Weiss A
and Bluestone JA: CD28 costimulation: From mechanism to therapy.
Immunity. 44:973–988. 2016. View Article : Google Scholar : PubMed/NCBI
|
72
|
Kennedy A, Waters E, Rowshanravan B, Hinze
C, Williams C, Janman D, Fox TA, Booth C, Pesenacker AM, Halliday
N, et al: Differences in CD80 and CD86 transendocytosis reveal CD86
as a key target for CTLA-4 immune regulation. Nat Immunol.
23:1365–1378. 2022. View Article : Google Scholar : PubMed/NCBI
|
73
|
Engelhardt JJ, Sullivan TJ and Allison JP:
CTLA-4 overexpression inhibits T cell responses through a
CD28-B7-dependent mechanism. J Immunol. 177:1052–1061. 2006.
View Article : Google Scholar : PubMed/NCBI
|
74
|
Mouchet N, Vu N, Turlin B, Rioux-Leclercq
N, Jouneau S, Samson M and Amiot L: HLA-G is widely expressed by
mast cells in regions of organ fibrosis in the liver, lung and
kidney. Int J Mol Sci. 22:124902021. View Article : Google Scholar : PubMed/NCBI
|
75
|
Zamora-Legoff JA, Krause ML, Crowson CS,
Ryu JH and Matteson EL: Progressive decline of lung function in
rheumatoid arthritis-associated interstitial lung disease.
Arthritis Rheumatol. 69:542–549. 2017. View Article : Google Scholar : PubMed/NCBI
|
76
|
Gimenez A, Storrer K, Kuranishi L, Soares
MR, Ferreira RG and Pereira CAC: Change in FVC and survival in
chronic fibrotic hypersensitivity pneumonitis. Thorax. 73:391–392.
2018. View Article : Google Scholar : PubMed/NCBI
|
77
|
Wong AW, Ryerson CJ and Guler SA:
Progression of fibrosing interstitial lung disease. Respir Res.
21:322020. View Article : Google Scholar : PubMed/NCBI
|