1
|
Pawankar R: Allergic diseases and asthma:
A global public health concern and a call to action. World Allergy
Organ J. 7:122014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Agache I, Eguiluz-Gracia I, Cojanu C,
Laculiceanu A, Del Giacco S, Zemelka-Wiacek M, Kosowska A, Akdis CA
and Jutel M: Advances and highlights in asthma in 2021. Allergy.
76:3390–3407. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lambrecht BN and Hammad H: The immunology
of asthma. Nat Immunol. 16:45–56. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Possa SS, Leick EA, Prado CM, Martins MA
and Tibério IFLC: Eosinophilic inflammation in allergic asthma.
Front Pharmacol. 4:462013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hammad H and Lambrecht BN: The basic
immunology of asthma. Cell. 184:1469–1485. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stokes JR and Casale TB: Characterization
of asthma endotypes: Implications for therapy. Ann Allergy Asthma
Immunol. 117:121–125. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W,
Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, et al:
Alternatively activated macrophages; a double-edged sword in
allergic asthma. J Transl Med. 18:582020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ma Y, Ge A, Zhu W, Liu YN, Ji NF, Zha WJ,
Zhang JX, Zeng XN and Huang M: Morin attenuates ovalbumin-induced
airway inflammation by modulating oxidative stress-responsive MAPK
signaling. Oxid Med Cell Longev. 2016:58436722016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Saeedavi M, Goudarzi M, Mehrzadi S, Basir
Z, Hasanvand A and Hosseinzadeh A: Sinapic acid ameliorates airway
inflammation in murine ovalbumin-induced allergic asthma by
reducing Th2 cytokine production. Life Sci. 307:1208582022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ezz-Eldin YM, Aboseif AA and Khalaf MM:
Potential anti-inflammatory and immunomodulatory effects of
carvacrol against ovalbumin-induced asthma in rats. Life Sci.
242:1172222020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zafar MS, Shahid K, Gobe GC, Yasmin R,
Naseem N and Shahzad M: Suppression of cytokine storm and
associated inflammatory mediators by salicylaldehyde derivative of
pregabalin: An innovative perspective for alleviating airway
inflammation and lung remodeling. J King Saud Univ Sci.
34:1018772022. View Article : Google Scholar
|
12
|
Sahiner UM, Birben E, Erzurum S, Sackesen
C and Kalayci O: Oxidative stress in asthma. World Allergy Organ J.
4:151–158. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bowler RP and Crapo JD: Oxidative stress
in airways: Is there a role for extracellular superoxide dismutase?
Am J Respir Crit Care Med. 166:S38–S43. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar
R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK and Chung KF:
Molecular mechanisms of oxidative stress in asthma. Mol Aspects
Med. 85:1010262022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee KS, Lee HK, Hayflick JS, Lee YC and
Puri KD: Inhibition of phosphoinositide 3-kinase delta attenuates
allergic airway inflammation and hyperresponsiveness in murine
asthma model. FASEB J. 20:455–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ganesh Yerra V, Negi G, Sharma SS and
Kumar A: Potential therapeutic effects of the simultaneous
targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy.
Redox Biol. 1:394–397. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
El-Hashim AZ, Renno WM, Abduo HT, Jaffal
SM, Akhtar S and Benter IF: Effect of inhibition of the
ubiquitin-proteasome-system and IκB kinase on airway inflammation
and hyperresponsiveness in a murine model of asthma. Int J
Immunopathol Pharmacol. 24:33–42. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li J, Xun P, Zamora D, Sood A, Liu K,
Daviglus M, Iribarren C, Jacobs D Jr, Shikany JM and He K: Intakes
of long-chain omega-3 (n-3) PUFAs and fish in relation to incidence
of asthma among American young adults: The CARDIA study. Am J Clin
Nutr. 97:173–178. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wendell SG, Baffi C and Holguin F: Fatty
acids, inflammation, and asthma. J Allergy Clin Immunol.
133:1255–1264. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kitz R, Rose MA, Schubert R, Beermann C,
Kaufmann A, Böhles HJ, Schulze J and Zielen S: Omega-3
polyunsaturated fatty acids and bronchial inflammation in grass
pollen allergy after allergen challenge. Respir Med. 104:1793–1798.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Siddiquee A, Patel M, Rajalingam S, Narke
D, Kurade M and Ponnoth DS: Effect of omega-3 fatty acid
supplementation on resolvin (RvE1)-mediated suppression of
inflammation in a mouse model of asthma. Immunopharmacol
Immunotoxicol. 41:250–257. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Miyata J and Arita M: Role of omega-3
fatty acids and their metabolites in asthma and allergic diseases.
Allergol Int. 64:27–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Duvall MG and Levy BD: DHA- and
EPA-derived resolvins, protectins, and maresins in airway
inflammation. Eur J Pharmacol. 785:144–155. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Koltsida O, Karamnov S, Pyrillou K,
Vickery T, Chairakaki AD, Tamvakopoulos C, Sideras P, Serhan CN and
Andreakos E: Toll-like receptor 7 stimulates production of
specialized pro-resolving lipid mediators and promotes resolution
of airway inflammation. EMBO Mol Med. 5:762–775. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Levy BD: Resolvin D1 and Resolvin E1
promote the resolution of allergic airway inflammation via shared
and distinct molecular counter-regulatory pathways. Front Immunol.
3:3902012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rogerio AP, Haworth O, Croze R, Oh SF,
Uddin M, Carlo T, Pfeffer MA, Priluck R, Serhan CN and Levy BD:
Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of
allergic airways responses. J Immunol. 189:1983–1991. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Aoki H, Hisada T, Ishizuka T, Utsugi M,
Kawata T, Shimizu Y, Okajima F, Dobashi K and Mori M: Resolvin E1
dampens airway inflammation and hyperresponsiveness in a murine
model of asthma. Biochem Biophys Res Commun. 367:509–515. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Su Y, Han Y, Choi HS, Lee GY, Cho HW, Choi
H, Jang YS, Choi JH and Seo JW: Lipid mediators derived from DHA
alleviate DNCB-induced atopic dermatitis and improve the gut
microbiome in BALB/c mice. Int Immunopharmacol. 124:1109002023.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou R, Shi X, Gao Y, Cai N, Jiang Z and
Xu X: Anti-inflammatory activity of guluronate oligosaccharides
obtained by oxidative degradation from alginate in
lipopolysaccharide-activated murine macrophage RAW 264.7 cells. J
Agric Food Chem. 63:160–168. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sun N, Teng A, Zhao Y, Liu H, Tu J, Jia Q
and Wang Q: Immunological and anticancer activities of
seleno-ovalbumin (Se-OVA) on H22-bearing mice. Int J Biol Macromol.
163:657–665. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Su Y, Han Y, Choi HS, Lee GY, Cho HW, Choi
H, Choi JH, Jang YS and Seo JW: Lipid mediators obtained from
docosahexaenoic acid by soybean lipoxygenase attenuate
RANKL-induced osteoclast differentiation and rheumatoid arthritis.
Biomed Pharmacother. 171:1161532024. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu D, Li S, Liu X, Xu J, Jiang A, Zhang Y,
Liu Z, Wang J, Zhou E, Wei Z, et al: Alpinetin prevents
inflammatory responses in OVA-induced allergic asthma through
modulating PI3K/AKT/NF-κB and HO-1 signaling pathways in mice. Int
Immunopharmacol. 89:1070732020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lambrecht BN, Hammad H and Fahy JV: The
cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Karadogan B, Beyaz S, Gelincik A,
Buyukozturk S and Arda N: Evaluation of oxidative stress biomarkers
and antioxidant parameters in allergic asthma patients with
different level of asthma control. J Asthma. 59:663–672. 2022.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Cho YS and Moon H-B: The role of oxidative
stress in the pathogenesis of asthma. Allergy Asthma Immunol Res.
2:183–187. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang WC, Fang LW and Liou CJ: Phloretin
attenuates allergic airway inflammation and oxidative stress in
asthmatic mice. Front Immunol. 8:1342017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Schubert R, Kitz R, Beermann C, Rose MA,
Lieb A, Sommerer PC, Moskovits J, Alberternst H, Böhles HJ, Schulze
J and Zielen S: Effect of n-3 polyunsaturated fatty acids in asthma
after low-dose allergen challenge. Int Arch Allergy Immunol.
148:321–329. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mickleborough TD, Lindley MR, Ionescu AA
and Fly AD: Protective effect of fish oil supplementation on
exercise-induced bronchoconstriction in asthma. Chest. 129:39–49.
2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yokoyama A, Hamazaki T, Ohshita A, Kohno
N, Sakai K, Zhao GD, Katayama H and Hiwada K: Effect of aerosolized
docosahexaenoic acid in a mouse model of atopic asthma. Int Arch
Allergy Immunol. 123:327–332. 2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Morin C, Fortin S, Cantin AM and Rousseau
É: MAG-EPA resolves lung inflammation in an allergic model of
asthma. Clin Exp Allergy. 43:1071–1082. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jiang T, Li P, Zhao J, Dai L, Sun D, Liu
M, An L, Jia L, Jing X, Wang H, et al: Long-chain polyunsaturated
fatty acids improve airway pathological features and gut microbial
imbalances in BALB/c mice with ovalbumin-induced asthma. J Funct
Foods. 81:1044652021. View Article : Google Scholar
|
43
|
Yin H, Liu W, Goleniewska K, Porter NA,
Morrow JD and Peebles RS Jr: Dietary supplementation of omega-3
fatty acid-containing fish oil suppresses F2-isoprostanes but
enhances inflammatory cytokine response in a mouse model of
ovalbumin-induced allergic lung inflammation. Free Radic Biol Med.
47:622–628. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Schuster GU, Bratt JM, Jiang X, Pedersen
TL, Grapov D, Adkins Y, Kelley DS, Newman JW, Kenyon NJ and
Stephensen CB: Dietary long-chain omega-3 fatty acids do not
diminish eosinophilic pulmonary inflammation in mice. Am J Respir
Cell Mol Biol. 50:626–636. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Miyata J, Fukunaga K, Iwamoto R, Isobe Y,
Niimi K, Takamiya R, Takihara T, Tomomatsu K, Suzuki Y, Oguma T, et
al: Dysregulated synthesis of protectin D1 in eosinophils from
patients with severe asthma. J Allergy Clin Immunol.
131:353–360.e2-e2. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zambalde ÉP, Teixeira MM, Favarin DC, de
Oliveira JR, Magalhães ML, Cunha MM, Silva WC Jr, Okuma CH,
Rodrigues V Jr, Levy BD and Rogerio AP: The anti-inflammatory and
pro-resolution effects of aspirin-triggered RvD1 (AT-RvD1) on
peripheral blood mononuclear cells from patients with severe
asthma. Int Immunopharmacol. 35:142–148. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Peh HY, Bruggemann TR, Ho WE, Cheng C, Tan
WD, Wong WF and Levy BD: Resolvin D2 promotes the
resolution of allergen-induced lung inflammation. J Immunol. 204 (1
Suppl):S147.192020. View Article : Google Scholar
|
48
|
Leigh R, Ellis R, Wattie JN, Hirota JA,
Matthaei KI, Foster PS, O'Byrne PM and Inman MD: Type 2 cytokines
in the pathogenesis of sustained airway dysfunction and airway
remodeling in mice. Am J Respir Crit Care Med. 169:860–867. 2004.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Platts-Mills TAE, Schuyler AJ, Erwin EA,
Commins SP and Woodfolk JA: IgE in the diagnosis and treatment of
allergic disease. J Allergy Clin Immunol. 137:1662–1670. 2016.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Ingram JL and Kraft M: IL-13 in asthma and
allergic disease: Asthma phenotypes and targeted therapies. J
Allergy Clin Immunol. 130:829–844. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Alasandagutti ML, Ansari MSS, Sagurthi SR,
Valluri V and Gaddam S: Role of IL-13 genetic variants in
signalling of asthma. Inflammation. 40:566–577. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Curran DR and Cohn L: Advances in mucous
cell metaplasia: A plug for mucus as a therapeutic focus in chronic
airway disease. Am J Respir Cell Mol Biol. 42:268–275. 2010.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Lai H and Rogers DF: New pharmacotherapy
for airway mucus hypersecretion in asthma and COPD: Targeting
intracellular signaling pathways. J Aerosol Med Pulm Drug Deliv.
23:219–231. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Adner M, Rose AC, Zhang Y, Swärd K, Benson
M, Uddman R, Shankley NP and Cardell LO: An assay to evaluate the
long-term effects of inflammatory mediators on murine airway smooth
muscle: Evidence that TNFalpha up-regulates 5-HT(2A)-mediated
contraction contraction. Br J Pharmacol. 137:971–982. 2002.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Dienz O and Rincon M: The effects of IL-6
on CD4 T cell responses. Clin Immunol. 130:27–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Henderson WR Jr, Chi EY, Teo JL, Nguyen C
and Kahn M: A small molecule inhibitor of redox-regulated NF-kappa
B and activator protein-1 transcription blocks allergic airway
inflammation in a mouse asthma model. J Immunol. 169:5294–5299.
2002. View Article : Google Scholar : PubMed/NCBI
|
57
|
Poynter ME: Airway epithelial regulation
of allergic sensitization in asthma. Pulm Pharmacol Ther.
25:438–446. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Ma B, Athari SS, Mehrabi Nasab E and Zhao
L: PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors
attenuate pathological mechanisms of allergic asthma. Inflammation.
44:1895–1907. 2021. View Article : Google Scholar : PubMed/NCBI
|
59
|
Bao Z, Zhang P, Yao Y, Lu G, Tong Z, Yan
B, Tu L, Yang G and Zhou J: Deguelin attenuates allergic airway
inflammation via inhibition of NF-κb pathway in mice. Int J Biol
Sci. 13:492–504. 2017. View Article : Google Scholar : PubMed/NCBI
|
60
|
Das J, Chen CH, Yang L, Cohn L, Ray P and
Ray A: A critical role for NF-kappa B in GATA3 expression and TH2
differentiation in allergic airway inflammation. Nat Immunol.
2:45–50. 2001. View
Article : Google Scholar : PubMed/NCBI
|