1
|
Li Z, Lei H, Luo M, et al: DNA methylation
downregulated mir-10b acts as a tumor suppressor in gastric cancer.
Gastric Cancer. 18:43–54. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Oliveira AM, Ross JS and Fletcher JA:
Tumor suppressor genes in breast cancer: the gatekeepers and the
caretakers. Am J Clin Pathol. 124 (Suppl):S16–S28. 2005.PubMed/NCBI
|
3
|
Banerjee R, Mani RS, Russo N, et al: The
tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2
overexpression in invasive squamous cell carcinoma. Oncogene.
30:4339–4349. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen X, Cao X, Dong W, Luo S, Suo Z and
Jin Y: Expression of TIP30 tumor suppressor gene is down-regulated
in human colorectal carcinoma. Dig Dis Sci. 55:2219–2226. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Brosnan CA and Voinnet O: The long and the
short of noncoding RNAs. Curr Opin Cell Biol. 21:416–425. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tano K and Akimitsu N: Long non-coding
RNAs in cancer progression. Front Genet. 3:2192012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kitagawa M, Kotake Y and Ohhata T: Long
non-coding RNAs involved in cancer development and cell fate
determination. Curr Drug Targets. 13:1616–1621. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shi X, Sun M, Liu H, Yao Y and Song Y:
Long non-coding RNAs: a new frontier in the study of human
diseases. Cancer Lett. 339:159–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
He Y, Meng XM, Huang C, et al: Long
noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer
Lett. 344:20–27. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li CH and Chen Y: Targeting long
non-coding RNAs in cancers: progress and prospects. Int J Biochem
Cell Biol. 45:1895–1910. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gutschner T and Diederichs S: The
hallmarks of cancer: a long non-coding RNA point of view. RNA Biol.
9:703–719. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Smith CM and Steitz JA: Classification of
gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member
of the 5′-terminal oligopyrimidine gene family reveals common
features of snoRNA host genes. Mol Cell Biol. 18:6897–6909.
1998.PubMed/NCBI
|
13
|
Muller AJ, Chatterjee S, Teresky A and
Levine AJ: The gas5 gene is disrupted by a frameshift mutation
within its longest open reading frame in several inbred mouse
strains and maps to murine chromosome. J. Mamm Genome. 9:773–774.
1998. View Article : Google Scholar
|
14
|
Coccia EM, Cicala C, Charlesworth A, et
al: Regulation and expression of a growth arrest-specific gene
(gas5) during growth, differentiation and development. Mol Cell
Biol. 12:3514–3521. 1992.PubMed/NCBI
|
15
|
MourtadaMaarabouni M, Pickard MR, Hedge
VL, Farzaneh F and Williams GT: GAS5, a non-protein-coding RNA,
controls apoptosis and is downregulated in breast cancer. Oncogene.
28:195–208. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sun M, Jin FY, Xia R, et al: Decreased
expression of long noncoding RNA GAS5 indicates a poor prognosis
and promotes cell proliferation in gastric cancer. BMC Cancer.
14:3192014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pickard MR, MourtadaMaarabouni M and
Williams GT: Long non-coding RNA GAS5 regulates apoptosis in
prostate cancer cell lines. Biochim Biophys Acta. 1832:1613–1623.
2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fleming JV, Fontanier N, Harries DN and
Rees WD: The growth arrest genes gas5, gas6 and CHOP-10 (gadd153)
are expressed in the mouse preimplantation embryo. Mol Reprod Dev.
48:310–316. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nakamura Y, Takahashi N, Kakegawa E, et
al: The GAS5 (growth arrest-specific transcript 5) gene fuses to
BCL6 as a result of t (1;3)(q25;q27) in a patient with B-cell
lymphoma. Cancer Genet Cytogenet. 182:144–149. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tcherkezian J, Cargnello M, Romeo Y, et
al: Proteomic analysis of cap-dependent translation identifies
LARP1 as a key regulator of 5′TOP mRNA translation. Genes Dev.
28:357–371. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Raho G, Barone V, Rossi D, Philipson L and
Sorrentino V: The gas5 gene shows four alternative splicing
patterns without coding for a protein. Gene. 256:13–17. 2000.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Renganathan A, KresojaRakic J, Echeverry
N, et al: GAS5 long non-coding RNA in malignant pleural
mesothelioma. Mol Cancer. 13:1192014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shi X, Sun M, Liu H, et al: A critical
role for the long non-coding RNA GAS5 in proliferation and
apoptosis in non-small-cell lung cancer. Mol Carcinog. Dec
19–2013.(Epub ahead of print).
|
24
|
MourtadaMaarabouni M, Hasan AM, Farzaneh F
and Williams GT: Inhibition of human T-cell proliferation by
mammalian target of rapamycin (mTOR) antagonists requires noncoding
RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol.
78:19–28. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
MourtadaMaarabouni M, Hedge VL, Kirkham L,
Farzaneh F and Williams GT: Growth arrest in human T-cells is
controlled by the non-coding RNA growth-arrest-specific transcript
5 (GAS5). J Cell Sci. 121:939–946. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kino T, Hurt DE, Ichijo T, Nader N and
Chrousos GP: Noncoding RNA gas5 is a growth arrest- and
starvation-associated repressor of the glucocorticoid receptor. Sci
Signal. 3:ra82010.PubMed/NCBI
|
27
|
Liu Z, Wang W, Jiang J, et al:
Downregulation of GAS5 promotes bladder cancer cell proliferation,
partly by regulating CDK6. PLoS One. 8:e739912013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lu X, Fang Y, Wang Z, et al:
Downregulation of gas5 increases pancreatic cancer cell
proliferation by regulating CDK6. Cell Tissue Res. 354:891–896.
2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gee HE, Buffa FM, Camps C, et al: The
small-nucleolar RNAs commonly used for microRNA normalisation
correlate with tumour pathology and prognosis. Br J Cancer.
104:1168–1177. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang Z, Zhu Z, Watabe K, et al: Negative
regulation of lncRNA GAS5 by miR-21. Cell Death Differ.
20:1558–1568. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Qiao HP, Gao WS, Huo JX and Yang ZS: Long
non-coding RNA GAS5 functions as a tumor suppressor in renal cell
carcinoma. Asian Pac J Cancer Prev. 14:1077–1082. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhou S, Wang J and Zhang Z: An emerging
understanding of long noncoding RNAs in kidney cancer. J Cancer Res
Clin Oncol. 140:1989–1995. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shain SA: Exogenous fibroblast growth
factors maintain viability, promote proliferation and suppress
GADD45alpha and GAS6 transcript content of prostate cancer cells
genetically modified to lack endogenous FGF-2. Mol Cancer Res.
2:653–661. 2004.PubMed/NCBI
|
34
|
Romanuik TL, Wang G, Morozova O, Delaney
A, Marra MA and Sadar MD: LNCaP Atlas: gene expression associated
with in vivo progression to castration-recurrent prostate cancer.
BMC Med Genomics. 3:432010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Abbah SA, Lam CX, Ramruttun AK, Goh JC and
Wong HK: Fusion performance of low-dose recombinant human bone
morphogenetic protein 2 and bone marrow-derived multipotent stromal
cells in biodegradable scaffolds: a comparative study in a large
animal model of anterior lumbar interbody fusion. Spine (Phila Pa
1976). 36:1752–1759. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Agirre X, VilasZornoza A, Jiménez-Velasco
A, et al: Epigenetic silencing of the tumor suppressor microRNA
Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis
in acute lymphoblastic leukemia. Cancer Res. 69:4443–4453. 2009.
View Article : Google Scholar : PubMed/NCBI
|
37
|
MourtadaMaarabouni M and Williams GT: Role
of GAS5 noncoding RNA in mediating the effects of rapamycin and its
analogues on mantle cell lymphoma cells. Clin Lymphoma Myeloma
Leuk. 14:468–473. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu RS, Wu KC, Yang JS, et al: Etomidate
induces cytotoxic effects and gene expression in a murine leukemia
macrophage cell line (RAW264.7). Anticancer Res. 31:2203–2208.
2011.PubMed/NCBI
|
39
|
He JF, Luo YM, Wan XH and Jiang D:
Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle
and apoptosis. J Biochem Mol Toxicol. 25:404–408. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pickard MR and Williams GT: Regulation of
apoptosis by long non-coding RNA GAS5 in breast cancer cells:
implications for chemotherapy. Breast Cancer Res Treat.
145:359–370. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang J, Zhang P, Wang L, Piao HL and Ma
L: Long non-coding RNA HOTAIR in carcinogenesis and metastasis.
Acta Biochim Biophys Sin (Shanghai). 46:1–5. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li Z, Shen J, Wu WK, et al: Leptin induces
cyclin D1 expression and proliferation of human nucleus pulposus
cells via JAK/STAT, PI3K/Akt and MEK/ERK pathways. PloS One.
7:e531762012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Krell J, Frampton AE, Mirnezami R, et al:
Growth arrest-specific transcript 5 associated snoRNA levels are
related to p53 expression and DNA damage in colorectal cancer. PloS
One. 9:e985612014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Okada N, Lin CP, Ribeiro MC, et al: A
positive feedback between p53 and miR-34 miRNAs mediates tumor
suppression. Genes Dev. 28:438–450. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Choi OR and Lim IK: Loss of p21 (Sdi1)
expression in senescent cells after DNA damage accompanied with
increase of miR-93 expression and reduced p53 interaction with p21
(Sdi1) gene promoter. Biochem Biophys Res Commun. 407:406–411.
2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Baldus SE, Schneider PM, Mönig SP, et al:
p21/waf1/cip1 in gastric cancer: associations with
histopathological subtypes, lymphonodal metastasis, prognosis and
p53 status. Scand J Gastroenterol. 36:975–980. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wu J, Qian J, Li C, et al: miR-129
regulates cell proliferation by downregulating Cdk6 expression.
Cell Cycle. 9:1809–1818. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
RodriguezOtero P, Román-Gómez J,
VilasZornoza A, et al: Deregulation of FGFR1 and CDK6 oncogenic
pathways in acute lymphoblastic leukaemia harbouring epigenetic
modifications of the MIR9 family. Br J Haematol. 155:73–83. 2011.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Dadras SS, Skrzypek A, Nguyen L, et al:
Prox-1 promotes invasion of kaposiform hemangioendotheliomas. J
Invest Dermatol. 128:2798–2806. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wu I, Shin SC, Cao Y, et al: Selective
glucocorticoid receptor translational isoforms reveal
glucocorticoid-induced apoptotic transcriptomes. Cell Death Dis.
4:e4532013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ghosal G and Chen J: DNA damage tolerance:
a double-edged sword guarding the genome. Transl Cancer Res.
2:107–129. 2013.PubMed/NCBI
|
52
|
Alexeyev M, Shokolenko I, Wilson G and
LeDoux S: The maintenance of mitochondrial DNA integrity-critical
analysis and update. Cold Spring Harb Perspect Biol. 5:a0126412013.
View Article : Google Scholar : PubMed/NCBI
|