1
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hsu PP and Sabatini DM: Cancer cell
metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gambhir SS: Molecular imaging of cancer
with positron emission tomography. Nat Rev Cancer. 2:683–693. 2002.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mathupala SP, Rempel A and Pedersen PL:
Glucose catabolism in cancer cells: identification and
characterization of a marked activation response of the type II
hexokinase gene to hypoxic conditions. J Biol Chem.
276:43407–43412. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Van der Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Altenberg B and Greulich KO: Genes of
glycolysis are ubiquitously overexpressed in 24 cancer classes.
Genomics. 84:1014–1020. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Noguchi T, Inoue H and Tanaka T: The M1-
and M2-type isozymes of rat pyruvate kinase are produced from the
same gene by alternative RNA splicing. J Biol Chem.
261:13807–13812. 1986.PubMed/NCBI
|
10
|
Noguchi T, Yamada K, Inoue H, Matsuda T
and Tanaka T: The L- and R-type isozymes of rat pyruvate kinase are
produced from a single gene by use of different promoters. J Biol
Chem. 262:14366–14371. 1987.PubMed/NCBI
|
11
|
Christofk HR, Van der Heiden MG, Harris
MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and
Cantley LC: The M2 splice isoform of pyruvate kinase is important
for cancer metabolism and tumour growth. Nature. 452:230–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang W and Lu Z: Nuclear PKM2 regulates
the Warburg effect. Cell Cycle. 12:3154–3158. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
David CJ, Chen M, Assanah M, Canoll P and
Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate
kinase mRNA splicing in cancer. Nature. 463:364–368. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang Z, Chatterjee D, Jeon HY, Akerman M,
Van der Heiden MG, Cantley LC and Krainer AR: Exon-centric
regulation of pyruvate kinase M alternative splicing via mutually
exclusive exons. J Mol Cell Biol. 4:79–87. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G
and Thompson CB: The biology of cancer: Metabolic reprogramming
fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Semenza GL: HIF-1: Upstream and downstream
of cancer metabolism. Curr Opin Genet Dev. 20:51–56. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun Q, Chen X, Ma J, Peng H, Wang F, Zha
X, Wang Y, Jing Y, Yang H, Chen R, et al: Mammalian target of
rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is
critical for aerobic glycolysis and tumor growth. Proc Natl Acad
Sci USA. 108:4129–4134. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Iqbal MA, Siddiqui FA, Gupta V,
Chattopadhyay S, Gopinath P, Kumar B, Manvati S, Chaman N and
Bamezai RN: Insulin enhances metabolic capacities of cancer cells
by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol
Cancer. 12:722013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Luo W, Hu H, Chang R, Zhong J, Knabel M,
O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is
a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell.
145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang
L, You MJ, Koh MY, Cote G, Aldape K, et al: EGFR-induced and PKCε
monoubiquitylation-dependent NF-κB activation upregulates PKM2
expression and promotes tumorigenesis. Mol Cell. 48:771–784. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Breitkreutz D, Braiman-Wiksman L, Daum N,
Denning MF and Tennenbaum T: Protein kinase C family: On the
crossroads of cell signaling in skin and tumor epithelium. J Canc
Res Clin Oncol. 133:793–808. 2007. View Article : Google Scholar
|
22
|
Choi JH, Ryu SH and Suh PG:
On/off-regulation of phospholipase C-gamma 1-mediated signal
transduction. Adv Enzyme Regul. 47:104–116. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Anastasiou D, Yu Y, Israelsen WJ, Jiang
JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, et al:
Pyruvate kinase M2 activators promote tetramer formation and
suppress tumorigenesis. Nat Chem Biol. 8:839–847. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chaneton B, Hillmann P, Zheng L, Martin
AC, Maddocks OD, Chokkathukalam A, Coyle JE, Jankevics A, Holding
FP, Vousden KH, et al: Serine is a natural ligand and allosteric
activator of pyruvate kinase M2. Nature. 491:458–462. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Keller KE, Tan IS and Lee YS: SAICAR
stimulates pyruvate kinase isoform M2 and promotes cancer cell
survival in glucose-limited conditions. Science. 338:1069–1072.
2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Keller KE, Doctor ZM, Dwyer ZW and Lee YS:
SAICAR induces protein kinase activity of PKM2 that is necessary
for sustained proliferative signaling of cancer cells. Mol Cell.
53:700–709. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gui DY, Lewis CA and Van der Heiden MG:
Allosteric regulation of PKM2 allows cellular adaptation to
different physiological states. Sci Signal. 6:pe72013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Anastasiou D, Poulogiannis G, Asara JM,
Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW,
Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen
species contributes to cellular antioxidant responses. Science.
334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Iqbal MA, Siddiqui FA, Chaman N, Gupta V,
Kumar B, Gopinath P and Bamezai RN: Missense mutations in pyruvate
kinase M2 promote cancer metabolism, oxidative endurance, anchorage
independence, and tumor growth in a dominant negative manner. J
Biol Chem. 289:8098–8105. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Luo W and Semenza GL: Pyruvate kinase M2
regulates glucose metabolism by functioning as a coactivator for
hypoxia-inducible factor 1 in cancer cells. Oncotarget. 2:551–556.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin
YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ and Wang WC: JMJD5
regulates PKM2 nuclear translocation and reprograms HIF-1α-mediated
glucose metabolism. Proc Natl Acad Sci USA. 111:279–284. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang W, Xia Y, Ji H, Zheng Y, Liang J,
Huang W, Gao X, Aldape K and Lu Z: Nuclear PKM2 regulates β-catenin
transactivation upon EGFR activation. Nature. 480:118–122. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu H, Li Z, Yang P, Zhang L and Fan Y:
PKM2 depletion induces the compensation of glutaminolysis through
β-catenin/c-Myc pathway in tumor cells. Cell Signal. 26:2397–2405.
2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li Z, Li X, Wu S, Xue M and Chen W: Long
non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase
2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci.
105:951–955. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki
N, Jiang Y, Zhou X, Li TT, Guan KL, et al: Mitogenic and oncogenic
stimulation of K433 acetylation promotes PKM2 protein kinase
activity and nuclear localization. Mol Cell. 52:340–352. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo
F, Lyssiotis CA, Aldape K, Cantley LC and Lu Z: ERK1/2-dependent
phosphorylation and nuclear translocation of PKM2 promotes the
Warburg effect. Nat Cell Biol. 14:1295–1304. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao X, Wang H, Yang JJ, Liu X and Liu ZR:
Pyruvate kinase M2 regulates gene transcription by acting as a
protein kinase. Mol Cell. 45:598–609. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang P and Li Z, Fu R, Wu H and Li Z:
Pyruvate kinase M2 facilitates colon cancer cell migration via the
modulation of STAT3 signalling. Cell Signal. 26:1853–1862. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang W, Xia Y, Hawke D, Li X, Liang J,
Xing D, Aldape K, Hunter T, Yung Alfred WK and Lu Z: PKM2
phosphorylates histone H3 and promotes gene transcription and
tumorigenesis. Cell. 150:685–696. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Morfouace M, Lalier L, Oliver L, Cheray M,
Pecqueur C, Cartron PF and Vallette FM: Control of glioma cell
death and differentiation by PKM2-Oct4 interaction. Cell Death Dis.
5:e10362014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bonnet S, Archer SL, Allalunis-Turner J,
Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta
L, Bonnet S, et al: A mitochondria-K+ channel axis is
suppressed in cancer and its normalization promotes apoptosis and
inhibits cancer growth. Cancer Cell. 11:37–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Weinberger R, Appel B, Stein A, Metz Y,
Neheman A and Barak M: The pyruvate kinase isoenzyme M2 (Tu M2-PK)
as a tumour marker for renal cell carcinoma. Eur J Cancer Care
(Engl). 16:333–337. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ahmed AS, Dew T, Lawton FG, Papadopoulos
AJ, Devaja O, Raju KS and Sherwood RA: M2-PK as a novel marker in
ovarian cancer. A prospective cohort study. Eur J Gynaecol Oncol.
28:83–88. 2007.PubMed/NCBI
|
44
|
Li L, Zhang Y, Qiao J, Yang JJ and Liu ZR:
Pyruvate kinase M2 in blood circulation facilitates tumor growth by
promoting angiogenesis. J Biol Chem. 289:25812–25821. 2014.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Van der Heiden MG, Christofk HR, Schuman
E, Subtelny AO, Sharfi H, Harlow EE, Xian J and Cantley LC:
Identification of small molecule inhibitors of pyruvate kinase M2.
Biochem Pharmacol. 79:1118–1124. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen J, Xie J, Jiang Z, Wang B, Wang Y and
Hu X: Shikonin and its analogs inhibit cancer cell glycolysis by
targeting tumor pyruvate kinase-M2. Oncogene. 30:4297–4306. 2011.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Goldberg MS and Sharp PA: Pyruvate kinase
M2-specific siRNA induces apoptosis and tumor regression. J Exp
Med. 209:217–224. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Spoden GA, Rostek U, Lechner S,
Mitterberger M, Mazurek S and Zwerschke W: Pyruvate kinase
isoenzyme M2 is a glycolytic sensor differentially regulating cell
proliferation, cell size and apoptotic cell death dependent on
glucose supply. Exp Cell Res. 315:2765–2774. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kung C, Hixon J, Choe S, Marks K, Gross S,
Murphy E, DeLaBarre B, Cianchetta G, Sethumadhavan S, Wang X, et
al: Small molecule activation of PKM2 in cancer cells induces
serine auxotrophy. Chem Biol. 19:1187–1198. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yacovan A, Ozeri R, Kehat T, Mirilashvili
S, Sherman D, Aizikovich A, Shitrit A, Ben-Zeev E, Schutz N,
Bohana-Kashtan O, et al: 1-(sulfonyl)-5-(arylsulfonyl)indoline as
activators of the tumor cell specific M2 isoform of pyruvate
kinase. Bioorg Med Chem Lett. 22:6460–6468. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Guo C, Linton A, Jalaie M, Kephart S,
Ornelas M, Pairish M, Greasley S, Richardson P, Maegley K, Hickey
M, et al: Discovery of
2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones
as novel PKM2 activators. Bioorg Med Chem Lett. 23:3358–3363. 2013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Parnell KM, Foulks JM, Nix RN, Clifford A,
Bullough J, Luo B, Senina A, Vollmer D, Liu J, McCarthy V, et al:
Pharmacologic activation of PKM2 slows lung tumor xenograft growth.
Mol Cancer Ther. 12:1453–1460. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Xu Y, Liu XH, Saunders M, Pearce S, Foulks
JM, Parnell KM, Clifford A, Nix RN, Bullough J, Hendrickson TF, et
al: Discovery of 3-(trifluoromethyl)-1H-pyrazole-5-carboxamide
activators of the M2 isoform of pyruvate kinase (PKM2). Bioorg Med
Chem Lett. 24:515–519. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Liu J, Wu N, Ma L, Liu M, Liu G, Zhang Y
and Lin X: Oleanolic acid suppresses aerobic glycolysis in cancer
cells by switching pyruvate kinase type M isoforms. PLoS One.
9:e916062014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Vaupel P: Metabolic microenvironment of
tumor cells: A key factor in malignant progression. Exp Oncol.
32:125–127. 2010.PubMed/NCBI
|
56
|
Wong N, Yan J, Ojo D, De Melo J, Cutz JC
and Tang D: Changes in PKM2 associate with prostate cancer
progression. Cancer Invest. 32:330–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhan C, Shi Y, Lu C and Wang Q: Pyruvate
kinase M2 is highly correlated with the differentiation and the
prognosis of esophageal squamous cell cancer. Dis Esophagus.
26:746–753. 2013.PubMed/NCBI
|
58
|
Zhou CF, Li XB, Sun H, Zhang B, Han YS,
Jiang Y, Zhuang QL, Fang J and Wu GH: Pyruvate kinase type M2 is
upregulated in colorectal cancer and promotes proliferation and
migration of colon cancer cells. IUBMB Life. 64:775–782. 2012.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Warner SL, Carpenter KJ and Bearss DJ:
Activators of PKM2 in cancer metabolism. Future Med Chem.
6:1167–1178. 2014. View Article : Google Scholar : PubMed/NCBI
|