1
|
Gutierrez C and Schiff R: HER2: Biology,
detection, and clinical implications. Arch Pathol Lab Med.
135:55–62. 2011.PubMed/NCBI
|
2
|
DiGiovanna MP, Chu P, Davison TL, Howe CL,
Carter D, Claus EB and Stern DF: Active signaling by HER-2/neu in a
subpopulation of HER-2/neu-overexpressing ductal carcinoma in situ:
Clinicopathological correlates. Cancer Res. 62:6667–6673.
2002.PubMed/NCBI
|
3
|
Graus-Porta D, Beerli RR, Daly JM and
Hynes NE: ErbB-2, the preferred heterodimerization partner of all
ErbB receptors, is a mediator of lateral signaling. EMBO J.
16:1647–1655. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Holbro T, Beerli RR, Maurer F, Koziczak M,
Barbas CF III and Hynes NE: The ErbB2/ErbB3 heterodimer functions
as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor
cell proliferation. Proc Natl Acad Sci USA. 100:pp. 8933–8938.
2003; View Article : Google Scholar : PubMed/NCBI
|
5
|
Sliwkowski MX, Lofgren JA, Lewis GD,
Hotaling TE, Fendly BM and Fox JA: Nonclinical studies addressing
the mechanism of action of trastuzumab (Herceptin). Semin Oncol.
26(4 Suppl 12): S60–S70. 1999.
|
6
|
Baselga J, Albanell J, Molina MA and
Arribas J: Mechanism of action of trastuzumab and scientific
update. Semin Oncol. 28(5 Suppl 16): S4–S11. 2001. View Article : Google Scholar
|
7
|
Luque-Cabal M, García-Teijido P,
Fernández-Pérez Y, Sánchez-Lorenzo L and Palacio-Vázquez I:
Mechanisms behind the resistance to trastuzumab in HER2-amplified
breast cancer and strategies to overcome it. Clin Med Insights
Oncol. 10 Suppl 1:S21–S30. 2016.
|
8
|
Vogel CL, Cobleigh MA, Tripathy D, Gutheil
JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF,
Burchmore M, et al: Efficacy and safety of trastuzumab as a single
agent in first-line treatment of HER2-overexpressing metastatic
breast cancer. J Clin Oncol. 20:719–726. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cobleigh MA, Vogel CL, Tripathy D, Robert
NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman
G and Slamon DJ: Multinational study of the efficacy and safety of
humanized anti-HER2 monoclonal antibody in women who have
HER2-overexpressing metastatic breast cancer that has progressed
after chemotherapy for metastatic disease. J Clin Oncol.
17:2639–2648. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shou J, Massarweh S, Osborne CK, Wakeling
AE, Ali S, Weiss H and Schiff R: Mechanisms of tamoxifen
resistance: Increased estrogen receptor-HER2/neu cross-talk in
ER/HER2-positive breast cancer. J Natl Cancer Inst. 96:926–935.
2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Schairer C, Lubin J, Troisi R, Sturgeon S,
Brinton L and Hoover R: Menopausal estrogen and estrogen-progestin
replacement therapy and breast cancer risk. JAMA. 283:485–491.
2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Soyal S, Ismail PM, Li J, Mulac-Jericevic
B, Conneely OM and Lydon JP: Progesterone's role in mammary gland
development and tumorigenesis as disclosed by experimental mouse
genetics. Breast Cancer Res. 4:191–196. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Graham JD and Clarke CL: Physiological
action of progesterone in target tissues. Endocr Rev. 18:502–519.
1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Béguelin W, Díaz Flaqué MC, Proietti CJ,
Cayrol F, Rivas MA, Tkach M, Rosemblit C, Tocci JM, Charreau EH,
Schillaci R and Elizalde PV: Progesterone receptor induces ErbB-2
nuclear translocation to promote breast cancer growth via a novel
transcriptional effect: ErbB-2 function as a coactivator of Stat3.
Mol Cell Biol. 30:5456–5472. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Stoica GE, Franke TF, Wellstein A,
Czubayko F, List HJ, Reiter R, Morgan E, Martin MB and Stoica A:
Estradiol rapidly activates Akt via the ErbB2 signaling pathway.
Mol Endocrinol. 17:818–830. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Balañá ME, Lupu R, Labriola L, Charreau EH
and Elizalde PV: Interactions between progestins and heregulin
(HRG) signaling pathways: HRG acts as mediator of progestins
proliferative effects in mouse mammary adenocarcinomas. Oncogene.
18:6370–6379. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Labriola L, Salatino M, Proietti CJ, Pecci
A, Coso OA, Kornblihtt AR, Charreau EH and Elizalde PV: Heregulin
induces transcriptional activation of the progesterone receptor by
a mechanism that requires functional ErbB-2 and mitogen-activated
protein kinase activation in breast cancer cells. Mol Cell Biol.
23:1095–1111. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang YC, Morrison G, Gillihan R, Guo J,
Ward RM, Fu X, Botero MF, Healy NA, Hilsenbeck SG, Phillips GL, et
al: Different mechanisms for resistance to trastuzumab versus
lapatinib in HER2-positive breast cancers-role of estrogen receptor
and HER2 reactivation. Breast Cancer Res. 13:R1212011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sadej R, Romanska H, Baldwin G,
Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R,
Ehrmann J, Buckley CD, et al: CD151 regulates tumorigenesis by
modulating the communication between tumor cells and endothelium.
Mol Cancer Res. 7:787–798. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Greulich H, Kaplan B, Mertins P, Chen TH,
Tanaka KE, Yun CH, Zhang X, Lee SH, Cho J, Ambrogio L, et al:
Functional analysis of receptor tyrosine kinase mutations in lung
cancer identifies oncogenic extracellular domain mutations of
ERBB2. Proc Natl Acad Sci USA. 109:pp. 14476–14481. 2012;
View Article : Google Scholar : PubMed/NCBI
|
21
|
Weiss FU, Wallasch C, Campiglio M, Issing
W and Ullrich A: Distinct characteristics of heregulin signals
mediated by HER3 or HER4. J Cell Physiol. 173:187–195. 1997.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Nagata Y, Lan KH, Zhou X, Tan M, Esteva
FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, et al: PTEN
activation contributes to tumor inhibition by trastuzumab, and loss
of PTEN predicts trastuzumab resistance in patients. Cancer Cell.
6:117–127. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Berns K, Horlings HM, Hennessy BT,
Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM,
Stemke-Hale K, Hauptmann M, et al: A functional genetic approach
identifies the PI3K pathway as a major determinant of trastuzumab
resistance in breast cancer. Cancer Cell. 12:395–402. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Nahta R, Yuan LX, Zhang B, Kobayashi R and
Esteva FJ: Insulin-like growth factor-I receptor/human epidermal
growth factor receptor 2 heterodimerization contributes to
trastuzumab resistance of breast cancer cells. Cancer Res.
65:11118–11128. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Scaltriti M, Eichhorn PJ, Cortés J,
Prudkin L, Aura C, Jiménez J, Chandarlapaty S, Serra V, Prat A,
Ibrahim YH, et al: Cyclin E amplification/overexpression is a
mechanism of trastuzumab resistance in HER2+ breast cancer
patients. Proc Natl Acad Sci USA. 108:pp. 3761–3766. 2011;
View Article : Google Scholar : PubMed/NCBI
|
26
|
Horwitz KB and McGuire WL: Estrogen
control of progesterone receptor in human breast cancer.
Correlation with nuclear processing of estrogen receptor. J Biol
Chem. 253:2223–2228. 1978.PubMed/NCBI
|
27
|
Daniel AR, Gaviglio AL, Knutson TP,
Ostrander JH, D'Assoro AB, Ravindranathan P, Peng Y, Raj GV, Yee D
and Lange CA: Progesterone receptor-B enhances estrogen
responsiveness of breast cancer cells via scaffolding PELP1- and
estrogen receptor-containing transcription complexes. Oncogene.
34:506–515. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ballaré C, Uhrig M, Bechtold T, Sancho E,
Di Domenico M, Migliaccio A, Auricchio F and Beato M: Two domains
of the progesterone receptor interact with the estrogen receptor
and are required for progesterone activation of the c-Src/Erk
pathway in mammalian cells. Mol Cell Biol. 23:1994–2008. 2003.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Knotts TA, Orkiszewski RS, Cook RG,
Edwards DP and Weigel NL: Identification of a phosphorylation site
in the hinge region of the human progesterone receptor and
additional amino-terminal phosphorylation sites. J Biol Chem.
276:8475–8483. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang Y, Beck CA, Clement JP IV,
Prendergast P, Yip TT, Hutchens TW, Edwards DP and Weigel NL:
Phosphorylation of human progesterone receptor by cyclin-dependent
kinase 2 on three sites that are authentic basal phosphorylation
sites in vivo. Mol Endocrinol. 11:823–832. 1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pierson-Mullany LK and Lange CA:
Phosphorylation of progesterone receptor serine 400 mediates
ligand-independent transcriptional activity in response to
activation of cyclin-dependent protein kinase 2. Mol Cell Biol.
24:10542–10557. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bernstein L: Epidemiology of
endocrine-related risk factors for breast cancer. J Mammary Gland
Biol Neoplasia. 7:3–15. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Campagnoli C, Clavel-Chapelon F, Kaaks R,
Peris C and Berrino F: Progestins and progesterone in hormone
replacement therapy and the risk of breast cancer. J Steroid
Biochem Mol Biol. 96:95–108. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou W and Slingerland JM: Links between
oestrogen receptor activation and proteolysis: Relevance to
hormone-regulated cancer therapy. Nat Rev Cancer. 14:26–38. 2014.
View Article : Google Scholar : PubMed/NCBI
|