Molecular mechanisms of suppressor of fused in regulating the hedgehog signalling pathway (Review)
- Authors:
- Dengliang Huang
- Yiting Wang
- Jiabin Tang
- Shiwen Luo
-
Affiliations: Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: March 1, 2018 https://doi.org/10.3892/ol.2018.8142
- Pages: 6077-6086
This article is mentioned in:
Abstract
![]() |
![]() |
Nüsslein-Volhard C and Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 287:795–801. 1980. View Article : Google Scholar : PubMed/NCBI | |
Briscoe J and Thérond PP: The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 14:416–429. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ingham PW, Nakano Y and Seger C: Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet. 12:393–406. 2011. View Article : Google Scholar : PubMed/NCBI | |
Varjosalo M and Taipale J: Hedgehog: Functions and mechanisms. Genes Dev. 22:2454–2472. 2008. View Article : Google Scholar : PubMed/NCBI | |
Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr and Scott MP: Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 272:1668–1671. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, et al: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 85:841–851. 1996. View Article : Google Scholar : PubMed/NCBI | |
Barakat MT, Humke EW and Scott MP: Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med. 16:337–348. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Gao G and Luo S: Hedgehog signaling pathway and ovarian cancer. Chin J Cancer Res. 25:346–353. 2013.PubMed/NCBI | |
Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu T, Lv N and Luo S: SPOP suppresses tumorigenesis by regulating Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res. 33:752014. View Article : Google Scholar : PubMed/NCBI | |
Shi C, Huang D, Lu N, Chen D, Zhang M, Yan Y, Deng L, Lu Q, Lu H and Luo S: Aberrantly activated Gli2-KIF20A axis is crucial for growth of hepatocellular carcinoma and predicts poor prognosis. Oncotarget. 7:26206–26219. 2016.PubMed/NCBI | |
Shin K, Lim A, Zhao C, Sahoo D, Pan Y, Spiekerkoetter E, Liao JC and Beachy PA: Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell. 26:521–533. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fei DL, Sanchez-Mejias A, Wang Z, Flaveny C, Long J, Singh S, Rodriguez-Blanco J, Tokhunts R, Giambelli C, Briegel KJ, et al: Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res. 72:4449–4458. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rimkus TK, Carpenter RL, Qasem S, Chan M and Lo HW: Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers (Basel). 8:pii: E22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hui CC and Angers S: Gli proteins in development and disease. Annu Rev Cell Dev Biol. 27:513–537. 2011. View Article : Google Scholar : PubMed/NCBI | |
Svärd J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergström A, Ericson J, Toftgård R and Teglund S: Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell. 10:187–197. 2006. View Article : Google Scholar : PubMed/NCBI | |
Préat T: Characterization of suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics. 132:725–736. 1992.PubMed/NCBI | |
Babcock DT, Shi S, Jo J, Shaw M, Gutstein HB and Galko MJ: Hedgehog signaling regulates nociceptive sensitization. Curr Biol. 21:1525–1533. 2011. View Article : Google Scholar : PubMed/NCBI | |
Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, et al: Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell. 151:414–426. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teperino R, Aberger F, Esterbauer H, Riobo N and Pospisilik JA: Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol. 33:81–92. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hooper JE: Distinct pathways for autocrine and paracrine Wingless signalling in Drosophila embryos. Nature. 372:461–464. 1994. View Article : Google Scholar : PubMed/NCBI | |
Pham A, Therond P, Alves G, Tournier FB, Busson D, Lamour-Isnard C, Bouchon BL, Préat T and Tricoire H: The suppressor of fused gene encodes a novel PEST protein involved in Drosophila segment polarity establishment. Genetics. 140:587–598. 1995.PubMed/NCBI | |
Monnier V, Dussillol F, Alves G, Lamour-Isnard C and Plessis A: Suppressor of fused links fused and Cubitus interruptus on the hedgehog signalling pathway. Curr Biol. 8:583–586. 1998. View Article : Google Scholar : PubMed/NCBI | |
Delattre M, Briand S, Paces-Fessy M and Blanchet-Tournier MF: The Suppressor of fused gene, involved in Hedgehog signal transduction in Drosophila, is conserved in mammals. Dev Genes Evol. 209:294–300. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pearse RV II, Collier LS, Scott MP and Tabin CJ: Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol. 212:323–336. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ding Q, Fukami Si, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M and Hui Cc: Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol. 9:1119–1122. 1999. View Article : Google Scholar : PubMed/NCBI | |
Simon-Chazottes D, Paces-Fessy M, Lamour-Isnard C, Guénet JL and Blanchet-Tournier MF: Genomic organization, chromosomal assignment, and expression analysis of the mouse suppressor of fused gene (Sufu) coding a Gli protein partner. Mamm Genome. 11:614–621. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ and Rosenthal A: Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci. 112:4437–4448. 1999.PubMed/NCBI | |
Rasheed BK, McLendon RE, Friedman HS, Friedman AH, Fuchs HE, Bigner DD and Bigner SH: Chromosome 10 deletion mapping in human gliomas: A common deletion region in 10q25. Oncogene. 10:2243–2246. 1995.PubMed/NCBI | |
Gray IC, Phillips SM, Lee SJ, Neoptolemos JP, Weissenbach J and Spurr NK: Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res. 55:4800–4803. 1995.PubMed/NCBI | |
Cherry AL, Finta C, Karlström M, Jin Q, Schwend T, Astorga-Wells J, Zubarev RA, Del Campo M, Criswell AR, de Sanctis D, et al: Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallogr D Biol Crystallogr. 69:2563–2579. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Fu L, Qi X, Zhang Z, Xia Y, Jia J, Jiang J, Zhao Y and Wu G: Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nat Commun. 4:26082013. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T and McKinnon PJ: Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene. 26:6442–6447. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ogino S, Gulley ML, den Dunnen JT and Wilson RB: Association for Molecular Patholpogy Training and Education Committtee: Standard mutation nomenclature in molecular diagnostics: Practical and educational challenges. J Mol Diagn. 9:1–6. 2007. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brugières L, Remenieras A, Pierron G, Varlet P, Forget S, Byrde V, Bombled J, Puget S, Caron O, Dufour C, et al: High frequency of germline SUFU mutations in children with desmoplastic/nodular medulloblastoma younger than 3 years of age. J Clin Oncol. 30:2087–2093. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ng D, Stavrou T, Liu L, Taylor MD, Gold B, Dean M, Kelley MJ, Dubovsky EC, Vezina G, Nicholson HS, et al: Retrospective family study of childhood medulloblastoma. Am J Med Genet A. 134:399–403. 2005. View Article : Google Scholar : PubMed/NCBI | |
Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, et al: Mutations in SUFU predispose to medulloblastoma. Nat Genet. 31:306–310. 2002. View Article : Google Scholar : PubMed/NCBI | |
Smith MJ, Beetz C, Williams SG, Bhaskar SS, O'Sullivan J, Anderson B, Daly SB, Urquhart JE, Bholah Z, Oudit D, et al: Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J Clin Oncol. 32:4155–4161. 2014. View Article : Google Scholar : PubMed/NCBI | |
Slade I, Murray A, Hanks S, Kumar A, Walker L, Hargrave D, Douglas J, Stiller C, Izatt L and Rahman N: Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma. Fam Cancer. 10:337–342. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brugières L, Pierron G, Chompret A, Paillerets BB, Di Rocco F, Varlet P, Pierre-Kahn A, Caron O, Grill J and Delattre O: Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. J Med Genet. 47:142–144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heby-Henricson K, Bergström A, Rozell B, Toftgård R and Teglund S: Loss of Trp53 promotes medulloblastoma development but not skin tumorigenesis in Sufu heterozygous mutant mice. Mol Carcinog. 51:754–760. 2012. View Article : Google Scholar : PubMed/NCBI | |
Svärd J, Rozell B, Toftgård R and Teglund S: Tumor suppressor gene co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice. Mol Carcinog. 48:408–419. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koch A, Waha A, Hartmann W, Milde U, Goodyer CG, Sörensen N, Berthold F, Digon-Söntgerath B, Krätzschmar J, Wiestler OD and Pietsch T: No evidence for mutations or altered expression of the Suppressor of Fused gene (SUFU) in primitive neuroectodermal tumours. Neuropathol Appl Neurobiol. 30:532–539. 2004. View Article : Google Scholar : PubMed/NCBI | |
Scott DK, Straughton D, Cole M, Bailey S, Ellison DW and Clifford SC: Identification and analysis of tumor suppressor loci at chromosome 10q23.3-10q25.3 in medulloblastoma. Cell Cycle. 5:2381–2389. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zabidi MA and Stark A: Regulatory enhancer-core-promoter communication via transcription factors and cofactors. Trends Genet. 32:801–814. 2016. View Article : Google Scholar : PubMed/NCBI | |
Spurrell CH, Dickel DE and Visel A: The ties that bind: Mapping the dynamic enhancer-promoter interactome. Cell. 167:1163–1166. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aavikko M, Li SP, Saarinen S, Alhopuro P, Kaasinen E, Morgunova E, Li Y, Vesanen K, Smith MJ, Evans DG, et al: Loss of SUFU function in familial multiple meningioma. Am J Hum Genet. 91:520–526. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lim CB, Prêle CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ and Mutsaers SE: Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One. 8:e666852013. View Article : Google Scholar : PubMed/NCBI | |
Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgård R and Undén AB: Deregulation of the hedgehog signalling pathway: A possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol. 208:17–25. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yin WC, Li ZJ and Hui CC: BCC or not: Sufu keeps it in check. Oncoscience. 2:77–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schulman JM, Oh DH, Sanborn JZ, Pincus L, McCalmont TH and Cho RJ: Multiple hereditary infundibulocystic basal cell carcinoma syndrome associated with a germline SUFU mutation. JAMA Dermatol. 152:323–327. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schönicke A, Scharwächter C, Kumar K, Blaschke B, Ruzicka T and Reifenberger G: Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol. 152:43–51. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mann K, Magee J, Guillaud-Bataille M, Blondel C, Bressac-de Paillerets B, Yeatman J and Winship I: Multiple skin hamartomata: A possible novel clinical presentation of SUFU neoplasia syndrome. Fam Cancer. 14:151–155. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sheng T, Li C, Zhang X, Chi S, He N, Chen K, McCormick F, Gatalica Z and Xie J: Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer. 3:292004. View Article : Google Scholar : PubMed/NCBI | |
Pastorino L, Ghiorzo P, Nasti S, Battistuzzi L, Cusano R, Marzocchi C, Garrè ML, Clementi M and Scarrà GB: Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am J Med Genet A. 149A:1539–1543. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ruel L and Thérond PP: Variations in Hedgehog signaling: Divergence and perpetuation in Sufu regulation of Gli. Genes Dev. 23:1843–1848. 2009. View Article : Google Scholar : PubMed/NCBI | |
McDermott A, Gustafsson M, Elsam T, Hui CC, Emerson CP Jr and Borycki AG: Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development. 132:345–357. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Wang C and Wang B: Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol. 326:177–189. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goetz SC and Anderson KV: The primary cilium: A signalling centre during vertebrate development. Nat Rev Genet. 11:331–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Lai CK, Evangelista M, Hongo JA, de Sauvage FJ and Scales SJ: Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol. 30:1910–1922. 2010. View Article : Google Scholar : PubMed/NCBI | |
Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ and Peterson AS: The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol. 19:1320–1326. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheung HO, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KK, Briscoe J and Hui CC: The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal. 2:ra292009. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang X, Du W, Chen L, Wang G, Cui Y, Liu Y, Dou Z, Wang H, Zhang P, et al: Suppressor of fused (Sufu) represses Gli1 transcription and nuclear accumulation, inhibits glioma cell proliferation, invasion and vasculogenic mimicry, improving glioma chemo-sensitivity and prognosis. Oncotarget. 5:11681–11694. 2014. View Article : Google Scholar : PubMed/NCBI | |
Szczepny A, Wagstaff KM, Dias M, Gajewska K, Wang C, Davies RG, Kaur G, Ly-Huynh J, Loveland KL and Jans DA: Overlapping binding sites for importin b1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization. Biochem J. 461:469–476. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi Q, Han Y and Jiang J: Suppressor of fused impedes Ci/Gli nuclear import by opposing Trn/Kapb2 in Hedgehog signaling. J Cell Sci. 127:1092–1103. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Shi Q and Jiang J: Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction. Proc Natl Acad Sci USA. 112:6383–6388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Pan Y and Wang B: Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development. 137:2001–2009. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tempé D, Casas M, Karaz S, Blanchet-Tournier MF and Concordet JP: Multisite protein kinase A and glycogen synthase kinase 3beta phosphorylation leads to Gli3 ubiquitination by SCFbetaTrCP. Mol Cell Biol. 26:4316–4326. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang B and Li Y: Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA. 103:33–38. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Bai CB, Joyner AL and Wang B: Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol. 26:3365–3377. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Fallon JF and Beachy PA: Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 100:423–434. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tukachinsky H, Lopez LV and Salic A: A mechanism for vertebrate Hedgehog signaling: Recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol. 191:415–428. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yue S, Chen Y and Cheng SY: Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene. 28:492–499. 2009. View Article : Google Scholar : PubMed/NCBI | |
Raducu M, Fung E, Serres S, Infante P, Barberis A, Fischer R, Bristow C, Thézénas ML, Finta C, Christianson JC, et al: SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. EMBO J. 35:1400–1416. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Shen L, Law K, Zhang Z, Liu X, Hua H, Li S, Huang H, Yue S, Hui CC and Cheng SY: Suppressor of fused chaperones Gli proteins to generate transcriptional responses to sonic hedgehog signaling. Mol Cell Biol. 37:pii: e00421. –16. 2017. View Article : Google Scholar | |
Santos N and Reiter JF: A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J Cell Sci. 127:1500–1510. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li BI, Matteson PG, Ababon MF, Nato AQ Jr, Lin Y, Nanda V, Matise TC and Millonig JH: The orphan GPCR, Gpr161, regulates the retinoic acid and canonical Wnt pathways during neurulation. Dev Biol. 402:17–31. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K and Mukhopadhyay S: Smoothened determines b-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 212:861–875. 2016. View Article : Google Scholar : PubMed/NCBI | |
Blair HJ, Tompson S, Liu YN, Campbell J, MacArthur K, Ponting CP, Ruiz-Perez VL and Goodship JA: Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus. BMC Biol. 9:142011. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Chen W, Chen Y and Jiang J: Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res. 22:1593–1604. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caparrós-Martín JA, Valencia M, Reytor E, Pacheco M, Fernandez M, Perez-Aytes A, Gean E, Lapunzina P, Peters H, Goodship JA and Ruiz-Perez VL: The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum Mol Genet. 22:124–139. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Kolterud A, Zeng H, Hoover A, Teglund S, Toftgård R and Liu A: Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev Biol. 330:452–460. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Jia J and Liu A: Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One. 5:e159002010. View Article : Google Scholar : PubMed/NCBI | |
Chen MH, Wilson CW, Li YJ, Law KK, Lu CS, Gacayan R, Zhang X, Hui CC and Chuang PT: Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 23:1910–1928. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ohlmeyer JT and Kalderon D: Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature. 396:749–753. 1998. View Article : Google Scholar : PubMed/NCBI | |
Paces-Fessy M, Boucher D, Petit E, Paute-Briand S and Blanchet-Tournier MF: The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J. 378:353–362. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cheng SY and Bishop JM: Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA. 99:5442–5447. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Yao E, Wang K, Nozawa Y, Shimizu H, Johnson JR, Chen JN, Krogan NJ and Chuang PT: Regulation of Sufu activity by p66b and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev. 28:2547–2563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M and Hui CC: Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation. 73:397–405. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B, Toftgård R and Zaphiropoulos PG: Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol. 1:312–319. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ruiz i Altaba A, Sánchez P and Dahmane N: Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nat Rev Cancer. 2:361–372. 2002. View Article : Google Scholar : PubMed/NCBI | |
Humke EW, Dorn KV, Milenkovic L, Scott MP and Rohatgi R: The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. 24:670–682. 2010. View Article : Google Scholar : PubMed/NCBI | |
Merchant M, Vajdos FF, Ultsch M, Maun HR, Wendt U, Cannon J, Desmarais W, Lazarus RA, de Vos AM and de Sauvage FJ: Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol. 24:8627–8641. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dunaeva M, Michelson P, Kogerman P and Toftgard R: Characterization of the physical interaction of Gli proteins with SUFU proteins. J Biol Chem. 278:5116–5122. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yue S, Xie L, Pu XH, Jin T and Cheng SY: Dual Phosphorylation of suppressor of fused (Sufu) by PKA and GSK3beta regulates its stability and localization in the primary cilium. J Biol Chem. 286:13502–13511. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li Y, Hu G, Huang X, Rao H, Xiong X, Luo Z, Lu Q and Luo S: Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cell Signal. 28:1304–1313. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Huang D, Li Y, Hu G, Rao H, Lu Q, Luo S and Wang Y: Nek2A/SuFu feedback loop regulates Gli-mediated Hedgehog signaling pathway. Int J Oncol. 50:373–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhou Z, Yao X, Chen P, Sun M, Su M, Chang C, Yan J, Jiang J and Zhang Q: Hedgehog signaling downregulates suppressor of fused through the HIB/SPOP-Crn axis in Drosophila. Cell Res. 24:595–609. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee DY, Deng Z, Wang CH and Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 104:20350–20355. 2007. View Article : Google Scholar : PubMed/NCBI | |
Long H, Wang Z, Chen J, Xiang T, Li Q, Diao X and Zhu B: microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). Oncotarget. 6:38705–38718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng RQ, Wan HY, Li HF, Liu M, Li X and Tang H: MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-a-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem. 287:14301–14309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Browne G, Dragon JA, Hong D, Messier TL, Gordon JA, Farina NH, Boyd JR, VanOudenhove JJ, Perez AW, Zaidi SK, et al: MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumour Biol. 37:8825–8839. 2016. View Article : Google Scholar : PubMed/NCBI | |
Min TH, Kriebel M, Hou S and Pera EM: The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev Biol. 358:262–276. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao Y, Cheng Y, Yang M, Wang Q, Feng X, et al: MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett. 385:117–127. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bari R, Hartford C, Chan WK, Vong Q, Li Y, Gan K, Zhou Y, Cheng C, Kang G, Shurtleff S, et al: Genome-wide single-nucleotide polymorphism analysis revealed SUFU suppression of acute graft-versus-host disease through downregulation of HLA-DR expression in recipient dendritic cells. Sci Rep. 5:110982015. View Article : Google Scholar : PubMed/NCBI | |
D'Amico D, Antonucci L, Di Magno L, Coni S, Sdruscia G, Macone A, Miele E, Infante P, Di Marcotullio L, De Smaele E, et al: Non-canonical Hedgehog/AMPK-mediated control of polyamine metabolism supports neuronal and medulloblastoma cell growth. Dev Cell. 35:21–35. 2015. View Article : Google Scholar : PubMed/NCBI |