1
|
Cappuzzo F: Therapy options for advanced
NSCLC. In: Guide to Targeted Therapies: Treatment Resistance in
Lung Cancer. Springer International Publishing; Cham: pp. 5–25.
2015
|
2
|
Rosell R, Moran T, Queralt C, Porta R,
Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M,
et al: Screening for epidermal growth factor receptor mutations in
lung cancer. N Engl J Med. 361:958–967. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen N, Fang W, Zhan J, Hong S, Tang Y,
Kang S, Zhang Y, He X, Zhou T, Qin T, et al: Upregulation of PD-L1
by EGFR activation mediates the immune escape in EGFR-driven NSCLC:
Implication for optional immune targeted therapy for NSCLC patients
with EGFR mutation. J Thorac Oncol. 10:910–923. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lisberg A, Cummings A, Goldman JW,
Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M,
Hunt J, et al: A phase II study of pembrolizumab in EGFR-mutant,
PD-L1+, tyrosine kinase inhibitor naive patients with advanced
NSCLC. J Thorac Oncol. 13:1138–1145. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kumagai S, Togashi Y, Kamada T, Sugiyama
E, Nishinakamura H, Takeuchi Y, Vitaly K, Itahashi K, Maeda Y,
Matsui S, et al: The PD-1 expression balance between effector and
regulatory T cells predicts the clinical efficacy of PD-1 blockade
therapies. Nat Immunol. 21:1346–1358. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dong ZY, Zhang JT, Liu SY, Su J, Zhang C,
Xie Z, Zhou Q, Tu HY, Xu CR, Yan LX, et al: EGFR mutation
correlates with uninflamed phenotype and weak immunogenicity,
causing impaired response to PD-1 blockade in non-small cell lung
cancer. Oncoimmunology. 6:e13561452017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Soo RA, Lim SM, Syn NL, Teng R, Soong R,
Mok TSK and Cho BC: Immune checkpoint inhibitors in epidermal
growth factor receptor mutant non-small cell lung cancer: Current
controversies and future directions. Lung Cancer. 115:12–20. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Jia Y, Li X, Jiang T, Zhao S, Zhao C,
Zhang L, Liu X, Shi J, Qiao M, Luo J, et al: EGFR-targeted therapy
alters the tumor microenvironment in EGFR-driven lung tumors:
Implications for combination therapies. Int J Cancer.
145:1432–1444. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mascia F, Mariani V, Girolomoni G and
Pastore S: Blockade of the EGF receptor induces a deranged
chemokine expression in keratinocytes leading to enhanced skin
inflammation. Am J Pathol. 163:303–312. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim H, Kim SH, Kim MJ, Kim SJ, Park SJ,
Chung JS, Bae JH and Kang CD: EGFR inhibitors enhanced the
susceptibility to NK cell-mediated lysis of lung cancer cells. J
Immunother. 34:372–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Im JS, Herrmann AC, Bernatchez C, Haymaker
C, Molldrem JJ, Hong WK and Perez-Soler R: Immune-modulation by
epidermal growth factor receptor inhibitors: Implication on
Anti-tumor immunity in lung cancer. PLoS One. 11:e01600042016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Paul T, Schumann C, Rüdiger S, Boeck S,
Heinemann V, Kächele V, Steffens M, Scholl C, Hichert V,
Seufferlein T and Stingl JC: Cytokine regulation by epidermal
growth factor receptor inhibitors and epidermal growth factor
receptor inhibitor associated skin toxicity in cancer patients. Eur
J Cancer. 50:1855–1863. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Venugopalan A, Lee MJ, Niu G,
Medina-Echeverz J, Tomita Y, Lizak MJ, Cultraro CM, Simpson RM,
Chen X, Trepel JB and Guha U: EGFR-targeted therapy results in
dramatic early lung tumor regression accompanied by imaging
response and immune infiltration in EGFR mutant transgenic mouse
models. Oncotarget. 7:54137–54156. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sheng J, Fang W, Liu X, Xing S, Zhan J, Ma
Y, Huang Y, Zhou N, Zhao H and Zhang L: Impact of gefitinib in
early stage treatment on circulating cytokines and lymphocytes for
patients with advanced non-small cell lung cancer. Onco Targets
Ther. 10:1101–1110. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gainor JF, Shaw AT, Sequist LV, Fu X,
Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, et
al: EGFR mutations and ALK rearrangements are associated with low
response rates to PD-1 pathway blockade in non-small cell lung
cancer: A retrospective analysis. Clin Cancer Res. 22:4585–4593.
2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fang Y, Wang Y, Zeng D, Zhi S, Shu T,
Huang N, Zheng S, Wu J, Liu Y, Huang G, et al: Comprehensive
analyses reveal TKI-induced remodeling of the tumor immune
microenvironment in EGFR/ALK-positive non-small-cell lung cancer.
OncoImmunology. 10:19510192021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dominguez C, Tsang KY and Palena C:
Short-term EGFR blockade enhances immune-mediated cytotoxicity of
EGFR mutant lung cancer cells: Rationale for combination therapies.
Cell Death Dis. 7:e23802016. View Article : Google Scholar : PubMed/NCBI
|
18
|
National Comprehensive Cancer Network
(NCCN), . The NCCN Clinical Practice Guidelines in Oncology,
Non-small Cell Lung Cancer (version 1.2021). NCCN; Plymouth
Meeting, PA: 2021, https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
|
19
|
Mazieres J, Drilon A, Lusque A, Mhanna L,
Cortot AB, Mezquita L, Thai AA, Mascaux C, Couraud S, Veillon R, et
al: Immune checkpoint inhibitors for patients with advanced lung
cancer and oncogenic driver alterations: Results from the
IMMUNOTARGET registry. Ann Oncol. 30:1321–1328. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Junttila MR and de Sauvage FJ: Influence
of tumour micro-environment heterogeneity on therapeutic response.
Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Klemm F and Joyce JA: Microenvironmental
regulation of therapeutic response in cancer. Trends Cell Biol.
25:198–213. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kawana S, Saito R, Miki Y, Kimura Y, Abe
J, Sato I, Endo M, Sugawara S and Sasano H: Suppression of tumor
immune microenvironment via microRNA-1 after epidermal growth
factor receptor-tyrosine kinase inhibitor resistance acquirement in
lung adenocarcinoma. Cancer Med. 10:718–727. 2021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Garrido G, Rabasa A, Garrido C, López A,
Chao L, García-Lora AM, Garrido F, Fernández LE and Sánchez B:
Preclinical modeling of EGFR-specific antibody resistance:
Oncogenic and immune-associated escape mechanisms. Oncogene.
33:3129–3139. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chapman PB: Mechanisms of resistance to
RAF inhibition in melanomas harboring a BRAF mutation. Am Soc Clin
Oncol Educ Book. doi: 10.1200/EdBook_AM.2013.33.e80.
|
25
|
Maynard A, McCoach CE, Rotow JK, Harris L,
Haderk F, Kerr DL, Yu EA, Schenk EL, Tan W, Zee A, et al:
Therapy-induced evolution of human lung cancer revealed by
single-cell RNA sequencing. Cell. 182:1232–1251.e22. 2020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu X, Tang J, Liu X, Ma Q, Deng Q, Li K,
Zhang B and Wang Y: A38 Gemcitabine improves suppressive immune
microenvironment induced by long-term treatment with EGFR-TKIs:
Implications for combination chemotherapy and immunotherapy. J
Thoracic Oncol. 15 (Suppl):S252020. View Article : Google Scholar
|
27
|
Tang J, Liu X, Gong Y, Zhu J, Huang M,
Ding Z, Yu M, Tie Y, Li Q and Wang Y: Epidermal growth factor
receptor tyrosine kinase inhibitors (EGFR-TKIs) impact on immune
microenvironment in non-small cell lung cancer (NSCLC). J Clin
Oncol. 36:e211542018. View Article : Google Scholar
|
28
|
Parker KH, Beury DW and Ostrand-Rosenberg
S: Myeloid-derived suppressor cells: Critical cells driving immune
suppression in the tumor microenvironment. Adv Cancer Res.
128:95–139. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Han JJ, Kim DW, Koh J, Keam B, Kim TM,
Jeon YK, Lee SH, Chung DH and Heo DS: Change in PD-L1 expression
after acquiring resistance to gefitinib in EGFR-mutant
non-small-cell lung cancer. Clin Lung Cancer. 17:263–270.e2. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li
K, Nishiyama A, Arai S, Yano S and Wang W: EGFR-TKI resistance
promotes immune escape in lung cancer via increased PD-L1
expression. Mol Cancer. 18:1652019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Isomoto K, Haratani K, Hayashi H, Shimizu
S, Tomida S, Niwa T, Yokoyama T, Fukuda Y, Chiba Y, Kato R, et al:
Impact of EGFR-TKI treatment on the tumor immune microenvironment
in EGFR mutation-positive non-small cell lung cancer. Clin Cancer
Res. 26:2037–2046. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Suda K, Murakami I, Yu H, Kim J, Ellison
K, Rivard CJ, Mitsudomi T and Hirsch FR: Heterogeneity in immune
marker expression after acquisition of resistance to EGFR kinase
inhibitors: Analysis of a case with small cell lung cancer
transformation. J Thorac Oncol. 12:1015–1020. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang A, Wang HY, Liu Y, Zhao MC, Zhang HJ,
Lu ZY, Fang YC, Chen XF and Liu GT: The prognostic value of PD-L1
expression for non-small cell lung cancer patients: A
meta-analysis. Eur J Surg Oncol. 41:450–456. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ercan D, Xu C, Yanagita M, Monast CS,
Pratilas CA, Montero J, Butaney M, Shimamura T, Sholl L, Ivanova
EV, et al: Reactivation of ERK signaling causes resistance to EGFR
kinase inhibitors. Cancer Discov. 2:934–947. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang L, Guo F, Liu X, Li X, Qin Q, Shu P,
Li Y and Wang Y: Continuous targeted kinase inhibitors treatment
induces upregulation of PD-L1 in resistant NSCLC. Sci Rep.
9:37052019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Akbay EA, Koyama S, Carretero J, Altabef
A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp
EM, Pugh TJ, et al: Activation of the PD-1 pathway contributes to
immune escape in EGFR-driven lung tumors. Cancer Discov.
3:1355–1363. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu
Z and Huang JA: The EGFR pathway is involved in the regulation of
PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in
EGFR-mutated non-small cell lung cancer. Int J Oncol. 49:1360–1368.
2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lin K, Cheng J, Yang T, Li Y and Zhu B:
EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through
inhibiting NF-κB. Biochem Biophys Res Commun. 463:95–101. 2015.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Pyo KH, Lim SM, Park CW, Jo HN, Kim JH,
Yun MR, Kim D, Xin CF, Lee W, Gheorghiu B, et al: Comprehensive
analyses of immunodynamics and immunoreactivity in response to
treatment in ALK-positive non-small-cell lung cancer. J Immunother
Cancer. 8:e0009702020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Philip M and Schietinger A: Beyond
genomics: Multidimensional analysis of cancer therapy resistance.
Trends Immunol. 36:665–667. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sugiyama E, Togashi Y, Takeuchi Y, Shinya
S, Tada Y, Kataoka K, Tane K, Sato E, Ishii G, Goto K, et al:
Blockade of EGFR improves responsiveness to PD-1 blockade in
EGFR-mutated non-small cell lung cancer. Sci Immunol.
5:eaav39372020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu Z, Han C, Dong C, Shen A, Hsu E, Ren
Z, Lu C, Liu L, Zhang A, Timmerman C, et al: Hypofractionated EGFR
tyrosine kinase inhibitor limits tumor relapse through triggering
innate and adaptive immunity. Sci Immunol. 4:eaav64732019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Creelan BC, Yeh TC, Kim SW, Nogami N, Kim
DW, Chow LQM, Kanda S, Taylor R, Tang W, Tang M, et al: A Phase 1
study of gefitinib combined with durvalumab in EGFR TKI-naive
patients with EGFR mutation-positive locally advanced/metastatic
non-small-cell lung cancer. Br J Cancer. 124:383–390. 2021.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Haratani K, Hayashi H, Tanaka T, Kaneda H,
Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, et
al: Tumor immune microenvironment and nivolumab efficacy in EGFR
mutation-positive non-small-cell lung cancer based on T790M status
after disease progression during EGFR-TKI treatment. Ann Oncol.
28:1532–1539. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Gibbons DL, Chow LQ, Kim DW, Kim SW, Yeh
T, Song X, Jiang H, Taylor R, Karakunnel J and Creelan B: 57O
Efficacy, safety and tolerability of MEDI4736 [durvalumab (D)], a
human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody,
combined with gefitinib (G): A phase I expansion in TKI-naïve
patients (pts) with EGFR mutant NSCLC. J Thoracic Oncol. 11
(Suppl):S792016. View Article : Google Scholar
|
46
|
Yang JC, Gadgeel SM, Sequist LV, Wu CL,
Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H and
Patnaik A: Pembrolizumab in combination with erlotinib or gefitinib
as first-line therapy for advanced NSCLC with sensitizing EGFR
mutation. J Thorac Oncol. 14:553–559. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gettinger S, Hellmann MD, Chow LQM,
Borghaei H, Antonia S, Brahmer JR, Goldman JW, Gerber DE, Juergens
RA, Shepherd FA, et al: Nivolumab plus erlotinib in patients with
EGFR-mutant advanced NSCLC. J Thorac Oncol. 13:1363–1372. 2018.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Rudin C, Cervantes A, Dowlati A, Besse B,
Ma B, Costa D, Schmid P, Heist R, Villaflor V, Sarkar I, et al:
MA15.02 long-term safety and clinical activity results from a phase
Ib study of erlotinib plus atezolizumab in advanced NSCLC. J
Thoracic Oncol. 13 (Suppl):S4072018. View Article : Google Scholar
|
49
|
Oxnard GR, Yang JC, Yu H, Kim SW, Saka H,
Horn L, Goto K, Ohe Y, Mann H, Thress KS, et al: TATTON: A
multi-arm, phase Ib trial of osimertinib combined with selumetinib,
savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol.
31:507–516. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yang JC, Shepherd FA, Kim DW, Lee GW, Lee
JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, et al: Osimertinib
plus durvalumab versus osimertinib monotherapy in EGFR
T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL
brief report. J Thorac Oncol. 14:933–939. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gourd K: AstraZeneca halts two lung cancer
drug trials. Lancet Respir Med. 3:9262015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Oshima Y, Tanimoto T, Yuji K and Tojo A:
EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated
patients with non-small cell lung cancer. JAMA Oncol. 4:1112–1115.
2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Patel SP, Pakkala S, Pennell NA, Reckamp
KL, Lanzalone S, Polli A, Tarazi J and Robert-Vizcarrondo F: Phase
Ib study of crizotinib plus pembrolizumab in patients with
previously untreated advanced non-small cell lung cancer with ALK
translocation. Oncologist. 25:562–e1012. 2020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Shaw AT, Felip E, Bauer TM, Besse B,
Navarro A, Postel-Vinay S, Gainor JF, Johnson M, Dietrich J, James
LP, et al: Lorlatinib in non-small-cell lung cancer with ALK or
ROS1 rearrangement: An international, multicentre, open-label,
single-arm first-in-man phase 1 trial. Lancet Oncol. 18:1590–1599.
2017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X
and Wu K: Biomarkers for predicting efficacy of PD-1/PD-L1
inhibitors. Mol Cancer. 17:1292018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Serizawa M, Takahashi T, Yamamoto N and
Koh Y: Combined treatment with erlotinib and a transforming growth
factor-β type I receptor inhibitor effectively suppresses the
enhanced motility of erlotinib-resistant non-small-cell lung cancer
cells. J Thorac Oncol. 8:259–269. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Masuda C, Yanagisawa M, Yorozu K, Kurasawa
M, Furugaki K, Ishikura N, Iwai T, Sugimoto M and Yamamoto K:
Bevacizumab counteracts VEGF-dependent resistance to erlotinib in
an EGFR-mutated NSCLC xenograft model. Int J Oncol. 51:425–434.
2017. View Article : Google Scholar : PubMed/NCBI
|