1
|
Higashi D, Katsuno H, Kimura H, Takahashi
K, Ikeuchi H, Kono T, Nezu R, Hatakeyama K, Kameyama H, Sasaki I,
et al: Current state of and problems related to cancer of the
intestinal tract associated with Crohn's disease in Japan.
Anticancer Res. 36:3761–3766. 2016.PubMed/NCBI
|
2
|
Sasaki H, Ikeuchi H, Bando T, Hirose K,
Hirata A, Chohno T, Horio Y, Tomita N, Hirota S, Ide Y, et al:
Clinicopathological characteristics of cancer associated with
Crohn's disease. Surg Today. 47:35–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim J, Lee HS, Park SH, Yang SK, Ye BD,
Yang DH, Kim KJ, Byeon JS, Yoon YS, Yu CS and Kim J: Pathologic
features of colorectal carcinomas associated with Crohn's disease
in Korean population. Pathol Res Pract. 213:250–255. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Uchino M, Ikeuchi H, Hata K, Minagawa T,
Horio Y, Kuwahara R, Nakamura S, Watanabe K, Saruta M, Fujii T, et
al: Intestinal cancer in patients with Crohn's disease: A
systematic review and meta-analysis. J Gastroenterol Hepatol.
36:329–336. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yano Y, Matsui T, Hirai F, Okado Y, Sato
Y, Tsurumi K, Ishikawa S, Beppu T, Koga A, Yoshizawa N, et al:
Cancer risk in Japanese Crohn's disease patients: Investigation of
the standardized incidence ratio. J Gastroenterol Hepatol.
28:1300–1305. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thomas M, Bienkowski R, Vandermeer TJ,
Trostle D and Cagir B: Malignant transformation in perianal
fistulas of Crohn's disease: A systematic review of literature. J
Gastrointest Surg. 14:66–73. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hirsch D, Wangsa D, Zhu YJ, Hu Y, Edelman
DC, Meltzer PS, Heselmeyer-Haddad K, Ott C, Kienle P, Galata C, et
al: Dynamics of genome alterations in Crohn's disease-associated
colorectal carcinogenesis. Clin Cancer Res. 24:4997–5011. 2018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Palmieri C, Müller G, Kroesen AJ, Galata
C, Rink AD, Morgenstern J and Kruis W: Perianal fistula-associated
carcinoma in Crohn's disease: A multicentre retrospective case
control study. J Crohns Colitis. 15:1686–1693. 2021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shwaartz C, Munger JA, Deliz JR, Bornstein
JE, Gorfine SR, Chessin DB, Popowich DA and Bauer JJ:
Fistula-associated anorectal cancer in the setting of Crohn's
disease. Dis Colon Rectum. 59:1168–1173. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Beaugerie L, Carrat F, Nahon S, Zeitoun
JD, Sabaté JM, Peyrin-Biroulet L, Colombel JF, Allez M, Fléjou JF,
Kirchgesner J, et al: High risk of anal and rectal cancer in
patients with anal and/or perianal Crohn's disease. Clin
Gastroenterol Hepatol. 16:892–899.e2. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Galata C, Hirsch D, Reindl W, Post S,
Kienle P, Boutros M, Gaiser T and Horisberger K: Clinical and
histopathologic features of colorectal adenocarcinoma in Crohn's
disease. J Clin Gastroenterol. 52:635–640. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ogino T, Mizushima T, Fujii M, Sekido Y,
Eguchi H, Nezu R, Ikeuchi H, Motoi U, Futami K, Okamoto K, et al:
Crohn's disease-associated anorectal cancer has a poor prognosis
with high local recurrence: A subanalysis of the nationwide
Japanese study. Am J Gastroenterol. 118:1626–1637. 2023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hirano Y, Futami K, Higashi D, Mikami K
and Maekawa T: Anorectal cancer surveillance in Crohn's disease. J
Anus Rectum Colon. 2:145–154. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Horvat N, Carlos Tavares Rocha C, Clemente
Oliveira B, Petkovska I and Gollub MJ: MRI of rectal cancer: Tumor
staging, imaging techniques, and management. Radiographics.
39:367–387. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lad SV, Haider MA, Brown CJ and Mcleod RS:
MRI appearance of perianal carcinoma in Crohn's disease. J Magn
Reson Imaging. 26:1659–1662. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Devon KM, Brown CJ, Burnstein M and McLeod
RS: Cancer of the anus complicating perianal Crohn's disease. Dis
Colon Rectum. 52:211–216. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu Y, Liu X, Cao X, Huang C, Liu E, Qian
S, Liu X, Wu Y, Dong F, Qiu CW, et al: Artificial intelligence: A
powerful paradigm for scientific research. Innovation (Camb).
2:1001792021.PubMed/NCBI
|
18
|
Lundberg SM and Lee SI: A unified approach
to interpreting model predictions. Adv Neural Inf Process Syst.
30:4765–4774. 2017.PubMed/NCBI
|
19
|
Shapley LS: A value for n-person games.
Contributions to the Theory of Games. 2:307–317. 1953.
|
20
|
Rodríguez-Pérez R and Bajorath J:
Interpretation of compound activity predictions from complex
machine learning models using local approximations and shapley
values. J Med Chem. 63:8761–8777. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li R, Shinde A, Liu A, Glaser S, Lyou Y,
Yuh B, Wong J and Amini A: Machine learning-based interpretation
and visualization of nonlinear interactions in prostate cancer
survival. JCO Clin Cancer Inform. 4:637–646. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li W, Liu Y, Liu W, Tang ZR, Dong S, Li W,
Zhang K, Xu C, Hu Z, Wang H, et al: Machine learning-based
prediction of lymph node metastasis among osteosarcoma patients.
Front Oncol. 12:7971032022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Li W, Dong S, Wang H, Wu R, Wu H, Tang ZR,
Zhang J, Hu Z and Yin C: Risk analysis of pulmonary metastasis of
chondrosarcoma by establishing and validating a new clinical
prediction model: A clinical study based on SEER database. BMC
Musculoskelet Disord. 22:5292021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kora P, Ooi CP, Faust O, Raghavendra U,
Gudigar A, Chan WY, Meenakshi K, Swaraja K, Plawiak P and Acharya
UR: Transfer learning techniques for medical image analysis: A
review. Biocybern Biomed Eng. 42:79–107. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Singh D, Kumar V and Vaishali Kaur M:
Classification of COVID-19 patients from chest CT images using
multi-objective differential evolution-based convolutional neural
networks. Eur J Clin Microbiol Infect Dis. 39:1379–1389. 2020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kwon H, Park J and Lee Y: Stacking
ensemble technique for classifying breast cancer. Healthc Inform
Res. 25:283–288. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zwanenburg A, Vallières M, Abdalah MA,
Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga
RJ, Boellaard R, et al: The image biomarker standardization
initiative: Standardized quantitative radiomics for high-throughput
image-based phenotyping. Radiology. 295:328–338. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wibmer A, Hricak H, Gondo T, Matsumoto K,
Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW,
et al: Haralick texture analysis of prostate MRI: Utility for
differentiating non-cancerous prostate from prostate cancer and
differentiating prostate cancers with different Gleason scores. Eur
Radiol. 25:2840–2850. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liang C, Huang Y, He L, Chen X, Ma Z, Dong
D, Tian J, Liang C and Liu Z: The development and validation of a
CT-based radiomics signature for the preoperative discrimination of
stage I–II and stage III–IV colorectal cancer. Oncotarget.
7:31401–31412. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Matsuno H, Mizushima T, Nezu R, Nakajima
K, Takahashi H, Haraguchi N, Nishimura J, Hata T, Yamamoto H, Doki
Y and Mori M: Detection of anorectal cancer among patients with
Crohn's disease undergoing surveillance with various biopsy
methods. Digestion. 94:24–29. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ky A, Sohn N, Weinstein MA and Korelitz
BI: Carcinoma arising in anorectal fistulas of Crohn's disease. Dis
Colon Rectum. 41:992–996. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Park YW, Eom J, Kim D, Ahn SS, Kim EH,
Kang SG, Chang JH, Kim SH and Lee SK: Correction to: A fully
automatic multiparametric radiomics model for differentiation of
adult pilocytic astrocytomas from high-grade gliomas. Eur Radiol.
32:57842022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Du R, Lee VH, Yuan H, Lam KO, Pang HH,
Chen Y, Lam EY, Khong PL, Lee AW, Kwong DL and Vardhanabhuti V:
Radiomics model to predict early progression of nonmetastatic
nasopharyngeal carcinoma after intensity modulation radiation
therapy: A multicenter study. Radiol Artif Intell. 1:e1800752019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang Y, Lang J, Zuo JZ, Dong Y, Hu Z, Xu
X, Zhang Y, Wang Q, Yang L, Wong STC, et al: The radiomic-clinical
model using the SHAP method for assessing the treatment response of
whole-brain radiotherapy: a multicentric study. Eur Radiol.
32:8737–8747. 2022. View Article : Google Scholar : PubMed/NCBI
|
35
|
LeCun Y, Bengio Y and Hinton G: Deep
learning. Nature. 521:436–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hussein S, Kandel P, Bolan CW, Wallace MB
and Bagci U: Lung and pancreatic tumor characterization in the deep
learning era: Novel supervised and unsupervised learning
approaches. IEEE Trans Med Imaging. 38:1777–1787. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hirsch D and Gaiser T: Crohn's
disease-associated colorectal carcinogenesis: TP53 mutations and
copy number gains of chromosome arm 5p as (early) markers of tumor
progression. Pathologe. 39 (Suppl 2):S253–S261. 2018.(In German).
View Article : Google Scholar
|
38
|
Fujita M, Matsubara N, Matsuda I, Maejima
K, Oosawa A, Yamano T, Fujimoto A, Furuta M, Nakano K, Oku-Sasaki
A, et al: Genomic landscape of colitis-associated cancer indicates
the impact of chronic inflammation and its stratification by
mutations in the Wnt signaling. Oncotarget. 9:969–981. 2017.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Ronneberger O, Fischer P and Brox T:
U-net: Convolutional networks for biomedical image segmentation.
Medical image computing and computer-assisted intervention-MICCAI
2015: 18th international conference, Munich, Germany, October 5–9,
2015, proceedings, part III 18. Springer; Cham: pp. 234–241.
2015
|