1
|
Pastore G, Znaor A, Spreafico F, Graf N,
Pritchard-Jones K and Steliarova-Foucher E: Malignant renal tumours
incidence and survival in European children (1978–1997): Report
from the automated childhood cancer information system project. Eur
J Cancer. 42:2103–2114. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Spreafico F, Fernandez CV, Brok J, Nakata
K, Vujanic G, Geller JI, Gessler M, Maschietto M, Behjati S,
Polanco A, et al: Wilms tumour. Nat Rev Dis Primers. 7:752021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Dome JS, Graf N, Geller JI, Fernandez CV,
Mullen EA, Spreafico F, Van den Heuvel-Eibrink M and
Pritchard-Jones K: Advances in wilms tumor treatment and biology:
Progress through international collaboration. J Clin Oncol.
33:2999–3007. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Termuhlen AM, Tersak JM, Liu Q, Yasui Y,
Stovall M, Weathers R, Deutsch M, Sklar CA, Oeffinger KC, Armstrong
G, et al: Twenty-five year follow-up of childhood Wilms tumor: A
report from the childhood cancer survivor study. Pediatr Blood
Cancer. 57:1210–1216. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dome JS, Fernandez CV, Mullen EA,
Kalapurakal JA, Geller JI, Huff V, Gratias EJ, Dix DB, Ehrlich PF,
Khanna G, et al: Children's oncology group's 2013 blueprint for
research: Renal tumors. Pediatr Blood Cancer. 60:994–1000. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Vujanic GM, Gessler M, Ooms A, Collini P,
Coulomb-l'Hermine A, D'Hooghe E, de Krijger RR, Perotti D,
Pritchard-Jones K, Vokuhl C, et al: The UMBRELLA SIOP-RTSG 2016
Wilms tumour pathology and molecular biology protocol. Nat Rev
Urol. 15:693–701. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pritchard-Jones K, Bergeron C, de Camargo
B, van den Heuvel-Eibrink MM, Acha T, Godzinski J, Oldenburger F,
Boccon-Gibod L, Leuschner I, Vujanic G, et al: Omission of
doxorubicin from the treatment of stage II–III, intermediate-risk
Wilms' tumour (SIOP WT 2001): An open-label, non-inferiority,
randomised controlled trial. Lancet. 386:1156–1164. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Israels T, Moreira C, Scanlan T, Molyneux
L, Kampondeni S, Hesseling P, Heij H, Borgstein E, Vujanic G,
Pritchard-Jones K and Hadley L: SIOP PODC: Clinical guidelines for
the management of children with Wilms tumour in a low income
setting. Pediatr Blood Cancer. 60:5–11. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
van den Heuvel-Eibrink MM, Hol JA,
Pritchard-Jones K, van Tinteren H, Furtwängler R, Verschuur AC,
Vujanic GM, Leuschner I, Brok J, Rübe C, et al: Position paper:
Rationale for the treatment of Wilms tumour in the UMBRELLA
SIOP-RTSG 2016 protocol. Nat Rev Urol. 14:743–752. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kaste SC, Dome JS, Babyn PS, Graf NM,
Grundy P, Godzinski J, Levitt GA and Jenkinson H: Wilms tumour:
Prognostic factors, staging, therapy and late effects. Pediatr
Radiol. 38:2–17. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang XB, Yuan LH, Yan LP, Ye YB, Lu B and
Xu X: UNC13B promote arsenic trioxide resistance in chronic
lymphoid leukemia through mitochondria quality control. Front
Oncol. 12:9209992022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mansoori B, Mohammadi A, Davudian S,
Shirjang S and Baradaran B: The different mechanisms of cancer drug
resistance: A brief review. Adv Pharm Bull. 7:339–348. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Pooryasin A, Maglione M, Schubert M,
Matkovic-Rachid T, Hasheminasab SM, Pech U, Fiala A, Mielke T and
Sigrist SJ: Unc13A and Unc13B contribute to the decoding of
distinct sensory information in Drosophila. Nat Commun.
12:19322021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Green TE, Scheffer IE, Berkovic SF and
Hildebrand MS: UNC13B and focal epilepsy. Brain. 145:e10–e12. 2022.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Corrigendum to: UNC13B variants associated
with partial epilepsy with favourable outcome. Brain. 145:e52022.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Warr MR, Binnewies M, Flach J, Reynaud D,
Garg T, Malhotra R, Debnath J and Passegué E: FOXO3A directs a
protective autophagy program in haematopoietic stem cells. Nature.
494:323–327. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Brown KW, Charles A, Dallosso A, White G,
Charlet J, Standen GR and Malik K: Characterization of 17.94, a
novel anaplastic Wilms' tumor cell line. Cancer Gene. 205:319–326.
2012. View Article : Google Scholar
|
19
|
Smith MA, Morton CL, Phelps D, Girtman K,
Neale G and Houghton PJ: SK-NEP-1 and Rh1 are Ewing family tumor
lines. Pediatr Blood Cancer. 50:703–706. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Garvin AJ, Re GG, Tarnowski BI,
Hazen-Martin DJ and Sens DA: The G401 cell line, utilized for
studies of chromosomal changes in Wilms' tumor, is derived from a
rhabdoid tumor of the kidney. Am J Pathol. 142:375–380.
1993.PubMed/NCBI
|
21
|
Oostveen RM and Pritchard-Jones K:
Pharmacotherapeutic management of wilms tumor: An update. Paediatr
Drugs. 21:1–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hurwitz SJ, Terashima M, Mizunuma N and
Slapak CA: Vesicular anthracycline accumulation in
doxorubicin-selected U-937 cells: Participation of lysosomes.
Blood. 89:3745–3754. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang J, Qiao JD, Liu XR, Liu DT, Chen YH,
Wu Y, Sun Y, Yu J, Ren RN, Mei Z, et al: UNC13B variants associated
with partial epilepsy with favourable outcome. Brain.
144:3050–3060. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bohme MA, Beis C, Reddy-Alla S, Reynolds
E, Mampell MM, Grasskamp AT, Lützkendorf J, Bergeron DD, Driller
JH, Babikir H, et al: Active zone scaffolds differentially
accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling.
Nat Neurosci. 19:1311–1320. 2016. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Meredith AM and Dass CR: Increasing role
of the cancer chemotherapeutic doxorubicin in cellular metabolism.
J Pharm Pharmacol. 68:729–741. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Murtagh G, Lyons T, O'Connell E, Ballot J,
Geraghty L, Fennelly D, Gullo G, Ledwidge M, Crown J, Gallagher J,
et al: Late cardiac effects of chemotherapy in breast cancer
survivors treated with adjuvant doxorubicin: 10-year follow-up.
Breast Cancer Res Treat. 156:501–506. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kilickap S, Barista I, Akgul E, Aytemir K,
Aksoy S and Tekuzman G: Early and late arrhythmogenic effects of
doxorubicin. South Med J. 100:262–265. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Saxena M, Stephens MA, Pathak H and
Rangarajan A: Transcription factors that mediate
epithelial-mesenchymal transition lead to multidrug resistance by
upregulating ABC transporters. Cell Death Dis. 2:e1792011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu T, Zhang J, Chen W, Pan S, Zhi X, Wen
L, Zhou Y, Chen BW, Qiu J, Zhang Y, et al: ARK5 promotes
doxorubicin resistance in hepatocellular carcinoma via
epithelial-mesenchymal transition. Cancer Lett. 377:140–148. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Withoff S, De Jong S, De Vries EG and
Mulder NH: Human DNA topoisomerase II: Biochemistry and role in
chemotherapy resistance (review). Anticancer Res. 16:1867–1880.
1996.PubMed/NCBI
|
31
|
Shukla A, Hillegass JM, MacPherson MB,
Beuschel SL, Vacek PM, Pass HI, Carbone M, Testa JR and Mossman BT:
Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to
doxorubicin. Mol Cancer. 9:3142010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Singh SV, Nair S, Ahmad H, Awasthi YC and
Krishan A: Glutathione S-transferases and glutathione peroxidases
in doxorubicin-resistant murine leukemic P388 cells. Biochem
Pharmacol. 38:3505–3510. 1989. View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo B, Tam A, Santi SA and Parissenti AM:
Role of autophagy and lysosomal drug sequestration in acquired
resistance to doxorubicin in MCF-7 cells. BMC Cancer. 16:7622016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Seebacher NA, Richardson DR and Jansson
PJ: A mechanism for overcoming P-glycoprotein-mediated drug
resistance: Novel combination therapy that releases stored
doxorubicin from lysosomes via lysosomal permeabilization using
Dp44mT or DpC. Cell Death Dis. 7:e25102016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lamming DW and Bar-Peled L: Lysosome: The
metabolic signaling hub. Traffic. 20:27–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mahapatra KK, Mishra SR, Behera BP, Patil
S, Gewirtz DA and Bhutia SK: The lysosome as an imperative
regulator of autophagy and cell death. Cell Mol Life Sci.
78:7435–7449. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang C and Wang X: Lysosome biogenesis:
Regulation and functions. J Cell Biol. 220:e2021020012021.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Perera RM and Zoncu R: The lysosome as a
regulatory hub. Annu Rev Cell Dev Biol. 32:223–253. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Patra S, Patil S, Klionsky DJ and Bhutia
SK: Lysosome signaling in cell survival and programmed cell death
for cellular homeostasis. J Cell Physiol. 238:287–305. 2023.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Adar Y, Stark M, Bram EE, Nowak-Sliwinska
P, van den Bergh H, Szewczyk G, Sarna T, Skladanowski A, Griffioen
AW and Assaraf YG: Imidazoacridinone-dependent lysosomal
photodestruction: A pharmacological Trojan horse approach to
eradicate multidrug-resistant cancers. Cell Death Disease.
3:e2932012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kaufmann AM and Krise JP: Lysosomal
sequestration of amine-containing drugs: Analysis and therapeutic
implications. J Pharma Sci. 96:729–746. 2007. View Article : Google Scholar
|
42
|
Gotink KJ, Broxterman HJ, Labots M, de
Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters
RJ, Jansen G, et al: Lysosomal sequestration of sunitinib: A novel
mechanism of drug resistance. Clin Cancer Res. 17:7337–7346. 2011.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Herlevsen M, Oxford G, Owens CR, Conaway M
and Theodorescu D: Depletion of major vault protein increases
doxorubicin sensitivity and nuclear accumulation and disrupts its
sequestration in lysosomes. Mol Cancer Ther. 6:1804–1813. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Groth-Pedersen L, Ostenfeld MS,
Hoyer-Hansen M, Nylandsted J and Jäättelä M: Vincristine induces
dramatic lysosomal changes and sensitizes cancer cells to
lysosome-destabilizing siramesine. Cancer Res. 67:2217–2225. 2007.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yanes RE, Tarn D, Hwang AA, Ferris DP,
Sherman SP, Thomas CR, Lu J, Pyle AD, Zink JI and Tamanoi F:
Involvement of lysosomal exocytosis in the excretion of mesoporous
silica nanoparticles and enhancement of the drug delivery effect by
exocytosis inhibition. Small. 9:697–704. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Duvvuri M, Konkar S, Funk RS, Krise JM and
Krise JP: A chemical strategy to manipulate the intracellular
localization of drugs in resistant cancer cells. Biochemistry.
44:15743–15749. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ouar Z, Bens M, Vignes C, Paulais M,
Pringel C, Fleury J, Cluzeaud F, Lacave R and Vandewalle A:
Inhibitors of vacuolar H+-ATPase impair the preferential
accumulation of daunomycin in lysosomes and reverse the resistance
to anthracyclines in drug-resistant renal epithelial cells. Biochem
J. 370:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hrabeta J, Groh T, Khalil MA, Poljakova J,
Adam V, Kizek R, Uhlik J, Doktorova H, Cerna T, Frei E, et al:
Vacuolar-ATPase-mediated intracellular sequestration of ellipticine
contributes to drug resistance in neuroblastoma cells. Int J Oncol.
47:971–980. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kazmi F, Hensley T, Pope C, Funk RS,
Loewen GJ, Buckley DB and Parkinson A: Lysosomal sequestration
(trapping) of lipophilic amine (cationic amphiphilic) drugs in
immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos.
41:897–905. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Geisslinger F, Muller M, Vollmar AM and
Bartel K: Targeting lysosomes in cancer as promising strategy to
overcome chemoresistance-a mini review. Front Oncol. 10:11562020.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Dykstra KM, Fay HRS, Massey AC, Yang N,
Johnson M, Portwood S, Guzman ML and Wang ES: Inhibiting autophagy
targets human leukemic stem cells and hypoxic AML blasts by
disrupting mitochondrial homeostasis. Blood Adv. 5:2087–2100. 2021.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Abdulla MH, Valli-Mohammed MA, Al-Khayal
K, Al Shkieh A, Zubaidi A, Ahmad R, Al-Saleh K, Al-Obeed O and
McKerrow J: Cathepsin B expression in colorectal cancer in a Middle
East population: Potential value as a tumor biomarker for late
disease stages. Oncol Rep. 37:3175–3180. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Fukuda ME, Iwadate Y, Machida T, Hiwasa T,
Nimura Y, Nagai Y, Takiguchi M, Tanzawa H, Yamaura A and Seki N:
Cathepsin D is a potential serum marker for poor prognosis in
glioma patients. Cancer Res. 65:5190–5194. 2005. View Article : Google Scholar : PubMed/NCBI
|
54
|
Davidson SM and Heiden MG: Critical
functions of the lysosome in cancer biology. Ann Rev Pharmacol
Toxicol. 57:481–507. 2017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Iulianna T, Kuldeep N and Eric F: The
Achilles' heel of cancer: Targeting tumors via lysosome-induced
immunogenic cell death. Cell Death Dis. 13:5092022. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kallunki T, Olsen OD and Jäättelä M:
Cancer-associated lysosomal changes: Friends or foes? Oncogene.
32:1995–2004. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Boya P and Kroemer G: Lysosomal membrane
permeabilization in cell death. Oncogene. 27:6434–6451. 2008.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Groth-Pedersen L and Jäättelä M: Combating
apoptosis and multidrug resistant cancers by targeting lysosomes.
Cancer Lett. 332:265–274. 2013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Manic G, Obrist F, Kroemer G, Vitale I and
Galluzzi L: Chloroquine and hydroxychloroquine for cancer therapy.
Mol Cell Oncol. 1:e299112014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Dufour M, Dormond-Meuwly A, Demartines N
and Dormond O: Targeting the mammalian target of rapamycin (mTOR)
in cancer therapy: Lessons from past and future perspectives.
Cancers (Basel). 3:2478–2500. 2011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Pellegrini P, Strambi A, Zipoli C,
Hägg-Olofsson M, Buoncervello M, Linder S and De Milito A: Acidic
extracellular pH neutralizes the autophagy-inhibiting activity of
chloroquine: Implications for cancer therapies. Autophagy.
10:562–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Vogl DT, Stadtmauer EA, Tan KS, Heitjan
DF, Davis LE, Pontiggia L, Rangwala R, Piao S, Chang YC, Scott EC,
et al: Combined autophagy and proteasome inhibition: A phase 1
trial of hydroxychloroquine and bortezomib in patients with
relapsed/refractory myeloma. Autophagy. 10:1380–1390. 2014.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Mahalingam D, Mita M, Sarantopoulos J,
Wood L, Amaravadi RK, Davis LE, Mita AC, Curiel TJ, Espitia CM,
Nawrocki ST, et al: Combined autophagy and HDAC inhibition: A phase
I safety, tolerability, pharmacokinetic, and pharmacodynamic
analysis of hydroxychloroquine in combination with the HDAC
inhibitor vorinostat in patients with advanced solid tumors.
Autophagy. 10:1403–1414. 2014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Rosenfeld MR, Ye X, Supko JG, Desideri S,
Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, et al: A
phase I/II trial of hydroxychloroquine in conjunction with
radiation therapy and concurrent and adjuvant temozolomide in
patients with newly diagnosed glioblastoma multiforme. Autophagy.
10:1359–1368. 2014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Amaravadi RK, Lippincott-Schwartz J, Yin
XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT and White E:
Principles and current strategies for targeting autophagy for
cancer treatment. Clin Cancer Res. 17:654–666. 2011. View Article : Google Scholar : PubMed/NCBI
|
66
|
Rangwala R, Leone R, Chang YC, Fecher LA,
Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M,
et al: Phase I trial of hydroxychloroquine with dose-intense
temozolomide in patients with advanced solid tumors and melanoma.
Autophagy. 10:1369–1379. 2014. View Article : Google Scholar : PubMed/NCBI
|
67
|
Rossner S, Fuchsbrunner K, Lange-Dohna C,
Hartlage-Rübsamen M, Bigl V, Betz A, Reim K and Brose N:
Munc13-1-mediated vesicle priming contributes to secretory amyloid
precursor protein processing. J Biol Chem. 279:27841–27844. 2004.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Dittman JS: Unc13: A multifunctional
synaptic marvel. Curr Opin Neurobiol. 57:17–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
69
|
Yamamoto H, Zhang S and Mizushima N:
Autophagy genes in biology and disease. Nat Rev Gene. 24:382–400.
2023. View Article : Google Scholar : PubMed/NCBI
|
70
|
Zhang J, He J, Johnson JL, Napolitano G,
Ramadass M, Rahman F and Catz SD: Cross-regulation of defective
endolysosome trafficking and enhanced autophagy through TFEB in
UNC13D deficiency. Autophagy. 15:1738–1756. 2019. View Article : Google Scholar : PubMed/NCBI
|