Mechanism of APC truncation involved in colorectal cancer tumorigenesis (Review)
- Authors:
- Tuya Wang
- Jing Fu
- Ye Huang
- Chun Fu
-
Affiliations: Department of Medicine, Hetao College, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China - Published online on: October 15, 2024 https://doi.org/10.3892/ol.2024.14748
- Article Number: 2
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J and Cervantes A: Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 72:372–401. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qu R, Ma Y, Zhang Z and Fu W: Increasing burden of colorectal cancer in China. Lancet Gastroenterol Hepatol. 7:7002022. View Article : Google Scholar : PubMed/NCBI | |
Spaander MCW, Zauber AG, Syngal S, Blaser MJ, Sung JJ, You YN and Kuipers EJ: Young-onset colorectal cancer. Nat Rev Dis Primers. 9:212023. View Article : Google Scholar : PubMed/NCBI | |
Shaukat A and Levin TR: Current and future colorectal cancer screening strategies. Nat Rev Gastroenterol Hepatol. 19:521–531. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wong CC and Yu J: Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 20:429–452. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Dan W, Zhang N, Fang J and Yang Y: Colorectal cancer and gut microbiota studies in China. Gut Microbes. 15:22363642023. View Article : Google Scholar : PubMed/NCBI | |
van Ginkel J, Tomlinson I and Soriano I: The evolutionary landscape of colorectal tumorigenesis: Recent paradigms, models, and hypotheses. Gastroenterology. 164:841–846. 2023. View Article : Google Scholar : PubMed/NCBI | |
Weiss JM, Gupta S, Burke CA, Axell L, Chen LM, Chung DC, Clayback KM, Dallas S, Felder S, Gbolahan O, et al: NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 1.2021. J Natl Compr Canc Netw. 19:1122–1132. 2021.PubMed/NCBI | |
Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P, et al: Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature. 328:614–616. 1987. View Article : Google Scholar : PubMed/NCBI | |
Karstensen JG, Burisch J, Pommergaard HC, Aalling L, Hojen H, Jespersen N, Schmidt PN and Bülow S: Colorectal cancer in individuals with familial adenomatous polyposis, based on analysis of the danish polyposis registry. Clin Gastroenterol Hepatol. 17:2294–2300.e1. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF and Tomlinson IP: APC mutations in sporadic colorectal tumors: A mutational ‘hotspot’ and interdependence of the ‘two hits’. Proc Natl Acad Sci USA. 97:3352–3357. 2000. View Article : Google Scholar : PubMed/NCBI | |
Aoki K and Taketo MM: Adenomatous polyposis coli (APC): A Multi-functional tumor suppressor gene. J Cell Sci. 120:3327–3335. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bressler SG, Mitrany A, Wenger A, Nathke I and Friedler A: The oligomerization domains of the APC protein mediate Liquid-liquid phase separation that is phosphorylation controlled. Int J Mol Sci. 24:64782023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lin K, Gao L, Chen L, Shi X and Wu G: Crystal structure of the armadillo repeat domain of adenomatous polyposis coli which reveals its inherent flexibility. Biochem Biophys Res Commun. 412:732–736. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y, Higuchi O and Akiyama T: Asef, a link between the tumor suppressor APC and G-protein signaling. Science. 289:1194–1197. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rowling PJE, Murton BL, Du Z and Itzhaki LS: Multivalent interaction of Beta-Catenin with its intrinsically disordered binding partner adenomatous polyposis Coli. Front Mol Biosci. 9:8964932022. View Article : Google Scholar : PubMed/NCBI | |
Kunttas-Tatli E, Von Kleeck RA, Greaves BD, Vinson D, Roberts DM and McCartney BM: The two SAMP repeats and their phosphorylation state in Drosophila Adenomatous polyposis coli-2 play mechanistically distinct roles in negatively regulating Wnt signaling. Mol Biol Cell. 26:4503–4518. 2015. View Article : Google Scholar : PubMed/NCBI | |
Juanes MA, Fees CP, Hoeprich GJ, Jaiswal R and Goode BL: EB1 directly regulates APC-Mediated actin nucleation. Curr Biol. 30:4763–4772.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Honnappa S, John CM, Kostrewa D, Winkler FK and Steinmetz MO: Structural insights into the EB1-APC interaction. EMBO J. 24:261–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lui C, Ashton C, Sharma M, Brocardo MG and Henderson BR: APC functions at the centrosome to stimulate microtubule growth. Int J Biochem Cell Biol. 70:39–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Ying J, Zang J, Lu H, Zhao X, Yang P, Wang X, Li J, Gong Z, Zhang D and Wang Z: Specific mutations in APC, with prognostic implications in metastatic colorectal cancer. Cancer Res Treat. 55:1270–1280. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lewis A, Davis H, Deheragoda M, Pollard P, Nye E, Jeffery R, Segditsas S, East P, Poulsom R, Stamp G, et al: The C-terminus of Apc does not influence intestinal adenoma development or progression. J Pathol. 226:73–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nusse R and Clevers H: Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klaus A and Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 8:387–398. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kennell J and Cadigan KM: APC and beta-catenin degradation. Adv Exp Med Biol. 656:1–12. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mishra L: STRAP: A bridge between mutant APC and Wnt/ß-Catenin signaling in intestinal cancer. Gastroenterology. 162:44–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Hou Y, Ming M, Yu L, Seba A and Qian Z: Apc regulates the function of hematopoietic stem cells largely through beta-catenin-dependent mechanisms. Blood. 121:4063–4072. 2013. View Article : Google Scholar : PubMed/NCBI | |
Odenwald MA, Prosperi JR and Goss KH: APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology. BMC Cancer. 13:122013. View Article : Google Scholar : PubMed/NCBI | |
Bakker ER, Hoekstra E, Franken PF, Helvensteijn W, van Deurzen CH, van Veelen W, Kuipers EJ and Smits R: β-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer. Oncogene. 32:4579–4585. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cole JM, Simmons K and Prosperi JR: Effect of adenomatous polyposis coli loss on tumorigenic potential in pancreatic ductal adenocarcinoma. Cells. 8:10842019. View Article : Google Scholar : PubMed/NCBI | |
Ranes M, Zaleska M, Sakalas S, Knight R and Guettler S: Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 81:3246–3261.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, Hanna S and Peifer M: Deconstructing the sscatenin destruction complex: Mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Mol Biol Cell. 22:1845–1863. 2011. View Article : Google Scholar : PubMed/NCBI | |
Montagne J, Preza M, Castillo E, Brehm K and Koziol U: Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of tapeworms. Dev Genes Evol. 229:89–102. 2019. View Article : Google Scholar : PubMed/NCBI | |
Faux MC, Coates JL, Catimel B, Cody S, Clayton AH, Layton MJ and Burgess AW: Recruitment of adenomatous polyposis coli and beta-catenin to axin-puncta. Oncogene. 27:5808–5820. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nong J, Kang K, Shi Q, Zhu X, Tao Q and Chen YG: Phase separation of Axin organizes the beta-catenin destruction complex. J Cell Biol. 220:e2020121122021. View Article : Google Scholar : PubMed/NCBI | |
Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T and Clevers H: Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 149:1245–1256. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ain QU, Seemab U, Rashid S, Nawaz MS and Kamal MA: Prediction of structure of human WNT-CRD (FZD) complex for computational drug repurposing. PLoS One. 8:e546302013. View Article : Google Scholar : PubMed/NCBI | |
Aghabozorgi AS, Bahreyni A, Soleimani A, Bahrami A, Khazaei M, Ferns GA, Avan A and Hassanian SM: Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie; 157. pp. 64–71. 2019, PubMed/NCBI | |
Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, Leitao CN, Fodde R and Smits R: The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet. 11:1549–1560. 2002. View Article : Google Scholar : PubMed/NCBI | |
Segditsas S, Rowan AJ, Howarth K, Jones A, Leedham S, Wright NA, Gorman P, Chambers W, Domingo E, Roylance RR, et al: APC and the Three-hit hypothesis. Oncogene. 28:146–155. 2009. View Article : Google Scholar : PubMed/NCBI | |
Henderson BR and Fagotto F: The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep. 3:834–839. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rosin-Arbesfeld R, Cliffe A, Brabletz T and Bienz M: Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J. 22:1101–1113. 2003. View Article : Google Scholar : PubMed/NCBI | |
Elliott KL, Catimel B, Church NL, Coates JL, Burgess AW, Layton MJ and Faux MC: Immunopurification of adenomatous polyposis coli (APC) proteins. BMC Res Notes. 6:4292013. View Article : Google Scholar : PubMed/NCBI | |
Hamada F and Bienz M: The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell. 7:677–685. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sumner ET, Chawla AT, Cororaton AD, Koblinski JE, Kovi RC, Love IM, Szomju BB, Korwar S, Ellis KC and Grossman SR: Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia. Oncogene. 36:4810–4816. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nadauld LD, Phelps R, Moore BC, Eisinger A, Sandoval IT, Chidester S, Peterson PW, Manos EJ, Sklow B, Burt RW and Jones DA: Adenomatous polyposis coli control of C-terminal binding protein-1 stability regulates expression of intestinal retinol dehydrogenases. J Biol Chem. 281:37828–37835. 2006. View Article : Google Scholar : PubMed/NCBI | |
Serre L, Stoppin-Mellet V and Arnal I: Adenomatous polyposis coli as a scaffold for microtubule End-binding proteins. J Mol Biol. 431:1993–2005. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chinnadurai G: The transcriptional corepressor CtBP: A foe of multiple tumor suppressors. Cancer Res. 69:731–734. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schneikert J, Brauburger K and Behrens J: APC mutations in colorectal tumours from FAP patients are selected for CtBP-mediated oligomerization of truncated APC. Hum Mol Genet. 20:3554–3564. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chandra SH, Wacker I, Appelt UK, Behrens J and Schneikert J: A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One. 7:e344792012. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Theodoropoulos PC, Eskiocak U, Wang W, Moon YA, Posner B, Williams NS, Wright WE, Kim SB, Nijhawan D, et al: Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer. Sci Transl Med. 8:361ra1402016. View Article : Google Scholar : PubMed/NCBI | |
Mizutani A, Yashiroda Y, Muramatsu Y, Yoshida H, Chikada T, Tsumura T, Okue M, Shirai F, Fukami T, Yoshida M and Seimiya H: RK-287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model. Cancer Sci. 109:4003–4014. 2018. View Article : Google Scholar : PubMed/NCBI | |
Novellasdemunt L, Foglizzo V, Cuadrado L, Antas P, Kucharska A, Encheva V, Snijders AP and Li VSW: USP7 is a Tumor-specific WNT activator for APC-mutated colorectal cancer by mediating β-Catenin deubiquitination. Cell Rep. 21:612–627. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Kim SB, Luitel K and Shay JW: Cholesterol depletion by TASIN-1 induces apoptotic cell death through the ER Stress/ROS/JNK signaling in colon cancer cells. Mol Cancer Ther. 17:943–951. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qian J, Steigerwald K, Combs KA, Barton MC and Groden J: Caspase cleavage of the APC tumor suppressor and release of an Amino-terminal domain is required for the Transcription-independent function of APC in apoptosis. Oncogene. 26:4872–4876. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brocardo M, Lei Y, Tighe A, Taylor SS, Mok MT and Henderson BR: Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations: Regulation of Bcl-2 and implications for cell survival. J Biol Chem. 283:5950–5959. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baro L, Islam A, Brown HM, Bell ZA and Juanes MA: APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience. 26:1065832023. View Article : Google Scholar : PubMed/NCBI | |
Juzans M, Cuche C, Rose T, Mastrogiovanni M, Bochet P, Di Bartolo V and Alcover A: Adenomatous polyposis coli modulates actin and microtubule cytoskeleton at the immunological synapse to tune CTL functions. Immunohorizons. 4:363–381. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhong J, Zhang Q, Feng L, Zheng Z, Zhang J and Lu S: Advances and insights of APC-Asef inhibitors for metastatic colorectal cancer therapy. Front Mol Biosci. 8:6625792021. View Article : Google Scholar : PubMed/NCBI | |
Kawasaki Y, Furukawa S, Sato R and Akiyama T: Differences in the localization of the adenomatous polyposis coli-Asef/Asef2 complex between adenomatous polyposis coli wild-type and mutant cells. Cancer Sci. 104:1135–1138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nelson SA, Li Z, Newton IP, Fraser D, Milne RE, Martin DM, Schiffmann D, Yang X, Dormann D, Weijer CJ, et al: Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Dis Model Mech. 5:940–947. 2012.PubMed/NCBI | |
Mimori-Kiyosue Y, Shiina N and Tsukita S: Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol. 148:505–518. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jaulin F and Kreitzer G: KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. J Cell Biol. 190:443–460. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K and Akiyama T: Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol. 4:323–327. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ruane PT, Gumy LF, Bola B, Anderson B, Wozniak MJ, Hoogenraad CC and Allan VJ: Tumour suppressor adenomatous polyposis coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2. Sci Rep. 6:274562016. View Article : Google Scholar : PubMed/NCBI | |
Marshall TW, Lloyd IE, Delalande JM, Nathke I and Rosenblatt J: The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium. Mol Biol Cell. 22:3962–3970. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bienz M and Hamada F: Adenomatous polyposis coli proteins and cell adhesion. Curr Opin Cell Biol. 16:528–535. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhao R, Huang P, Yang F, Quan Z, Xu N and Xi R: APC Loss-induced intestinal tumorigenesis in Drosophila: Roles of Ras in Wnt signaling activation and tumor progression. Dev Biol. 378:122–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Graeve FM, Van de Bor V, Ghiglione C, Cerezo D, Jouandin P, Ueda R, Shashidhara LS and Noselli S: Drosophila apc regulates delamination of invasive epithelial clusters. Dev Biol. 368:76–85. 2012. View Article : Google Scholar : PubMed/NCBI | |
Faux MC, Coates JL, Kershaw NJ, Layton MJ and Burgess AW: Independent interactions of phosphorylated β-catenin with E-cadherin at Cell-cell contacts and APC at cell protrusions. PLoS One. 5:e141272010. View Article : Google Scholar : PubMed/NCBI | |
Restucci B, Martano M, G DEV, Lo Muzio L and Maiolino P: Expression of E-cadherin, beta-catenin and APC protein in canine colorectal tumours. Anticancer Res. 29:2919–2925. 2009.PubMed/NCBI | |
Lim JW, Mathias RA, Kapp EA, Layton MJ, Faux MC, Burgess AW, Ji H and Simpson RJ: Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. Electrophoresis. 33:1873–1880. 2012. View Article : Google Scholar : PubMed/NCBI | |
Faux MC, Ross JL, Meeker C, Johns T, Ji H, Simpson RJ, Layton MJ and Burgess AW: Restoration of Full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J Cell Sci. 117:427–439. 2004. View Article : Google Scholar : PubMed/NCBI | |
Neufeld KL: Nuclear APC. Adv Exp Med Biol. 656:13–29. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Boer HR, Guerrero Llobet S and van Vugt MA: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci. 73:949–960. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yamada M, Watanabe K, Mistrik M, Vesela E, Protivankova I, Mailand N, Lee M, Masai H, Lukas J and Bartek J: ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev. 27:2459–2472. 2013. View Article : Google Scholar : PubMed/NCBI | |
Das D, Preet R, Mohapatra P, Satapathy SR, Siddharth S, Tamir T, Jain V, Bharatam PV, Wyatt MD and Kundu CN: 5-Fluorouracil mediated Anti-cancer activity in colon cancer cells is through the induction of adenomatous polyposis coli: Implication of the Long-patch base excision repair pathway. DNA Repair (Amst). 24:15–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tudek B and Speina E: Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat Res. 736:82–92. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brocardo MG, Borowiec JA and Henderson BR: Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. Int J Biochem Cell Biol. 43:1354–1364. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stefanski CD, Keffler K, McClintock S, Milac L and Prosperi JR: APC loss affects DNA damage repair causing doxorubicin resistance in breast cancer cells. Neoplasia. 21:1143–1150. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baumann SJ, Grawenhoff J, Rodrigues EC, Speroni S, Gili M, Komissarov A and Maurer SP: APC couples neuronal mRNAs to multiple kinesins, EB1, and shrinking microtubule ends for bidirectional mRNA motility. Proc Natl Acad Sci USA. 119:e22115361192022. View Article : Google Scholar : PubMed/NCBI | |
Overlack K, Bange T, Weissmann F, Faesen AC, Maffini S, Primorac I, Muller F, Peters JM and Musacchio A: BubR1 promotes Bub3-Dependent APC/C inhibition during spindle assembly checkpoint signaling. Curr Biol. 27:2915–2927.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dikovskaya D, Schiffmann D, Newton IP, Oakley A, Kroboth K, Sansom O, Jamieson TJ, Meniel V, Clarke A and Näthke IS: Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol. 176:183–195. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng L and Mao Y: mDia3-EB1-APC: A connection between kinetochores and microtubule plus ends. Commun Integr Biol. 4:480–482. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meniel V, Megges M, Young MA, Cole A, Sansom OJ and Clarke AR: Apc and p53 interaction in DNA damage and genomic instability in hepatocytes. Oncogene. 34:4118–4129. 2015. View Article : Google Scholar : PubMed/NCBI |