Open Access

Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma

  • Authors:
    • Seonhee Kim
    • Bo-Kyoung Jung
    • Jinju Kim
    • Joo Hee Jeon
    • Minsoo Kim
    • Sung Hoon Jang
    • Cuk-Seong Kim
    • Hyun Jang
  • View Affiliations

  • Published online on: October 16, 2024     https://doi.org/10.3892/ol.2024.14752
  • Article Number: 6
  • Copyright: © Kim et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma (GBM) is one of the most lethal types of human brain cancer and is characterized by rapid growth, an aggressive nature and a poor prognosis. GBM is highly heterogeneous, and often involves several genetic mutations and abnormalities. Genetic disorders or low expression of phosphatase and tensin homolog (PTEN) are associated with GBM occurrence, progression and poor prognosis of patients with GBM. However, effective delivery of PTEN for expression in GBM cells within the brain remains challenging. The aim of the present study was to develop a therapeutic strategy to restore PTEN expression in GBM cells by utilizing a recombinant Newcastle disease virus (rNDV) vector expressing the human PTEN gene (rNDV‑PTEN). Methods included infection of U87‑MG cells with rNDV‑PTEN, followed by assessments of PTEN expression, and cell proliferation, migration and apoptosis. Additionally, an orthotopic GBM mouse model was used to evaluate the in vivo efficacy of rNDV‑PTEN. Infection with recombinant rNDV‑PTEN treatment increased PTEN protein expression in the cytoplasm of the U87‑MG cells, reduced cell proliferation and migration, and induced apoptosis by inhibiting the AKT/mTOR signaling pathway. In the orthotopic GBM mouse model, rNDV‑PTEN significantly reduced tumor size and improved survival rates. Magnetic resonance imaging and in vivo imaging analyses confirmed the targeted delivery and efficacy of rNDV‑PTEN. These findings highlight the usefulness of rNDV‑PTEN as a promising therapeutic agent for GBM, representing a potential advancement in treatment, especially for patients with PTEN deficiency.
View Figures
View References

Related Articles

Journal Cover

January-2025
Volume 29 Issue 1

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Kim S, Jung B, Kim J, Jeon JH, Kim M, Jang SH, Kim C and Jang H: Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma. Oncol Lett 29: 6, 2025.
APA
Kim, S., Jung, B., Kim, J., Jeon, J.H., Kim, M., Jang, S.H. ... Jang, H. (2025). Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma. Oncology Letters, 29, 6. https://doi.org/10.3892/ol.2024.14752
MLA
Kim, S., Jung, B., Kim, J., Jeon, J. H., Kim, M., Jang, S. H., Kim, C., Jang, H."Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma". Oncology Letters 29.1 (2025): 6.
Chicago
Kim, S., Jung, B., Kim, J., Jeon, J. H., Kim, M., Jang, S. H., Kim, C., Jang, H."Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma". Oncology Letters 29, no. 1 (2025): 6. https://doi.org/10.3892/ol.2024.14752