1
|
Motaln H, Recek N and Rogelj B:
Intracellular responses triggered by cold atmospheric plasma and
plasma-activated media in cancer cells. Molecules. 261:3362021.
|
2
|
Chen Z, Simonyan H, Cheng X, Gjika E, Lin
L, Canady J, Sherman JH, Young C and Keidar M: A novel micro cold
atmospheric plasma device for glioblastoma both in vitro and in
vivo. Cancers (Basel). 9:612017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Arndt S, Unger P, Berneburg M, Bosserhoff
AK and Karrer S: Cold atmospheric plasma (CAP) activates
angiogenesis-related molecules in skin keratinocytes, fibroblasts
and endothelial cells and improves wound angiogenesis in an
autocrine and paracrine mode. J Dermatol Sci. 89:181–190. 2018.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dubuc A, Monsarrat P, Virard F, Merbahi N,
Sarrette JP, Laurencin-Dalicieux S and Cousty S: Use of
cold-atmospheric plasma in oncology: A concise systematic review.
Ther Adv Med Oncol. 10:4335657812018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Aggelopoulos CA, Christodoulou AM,
Tachliabouri M, Meropoulis S, Christopoulou ME, Karalis TT,
Chatzopoulos A and Skandalis SS: Cold atmospheric plasma attenuates
breast cancer cell growth through regulation of cell
microenvironment effectors. Front Oncol. 11:8268652021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Van Loenhout J, Flieswasser T, Freire
Boullosa L, De Waele J, Van Audenaerde J, Marcq E, Jacobs J, Lin A,
Lion E, Dewitte H, et al: Cold atmospheric plasma-treated pbs
eliminates immunosuppressive pancreatic stellate cells and induces
immunogenic cell death of pancreatic cancer cells. Cancers (Basel).
11:15972019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Soni V, Adhikari M, Simonyan H, Lin L,
Sherman JH, Young CN and Keidar M: In vitro and in vivo enhancement
of temozolomide effect in human glioblastoma by non-invasive
application of cold atmospheric plasma. Cancers (Basel).
13:44852021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zahedian S, Hekmat A, Tackallou SH and
Ghoranneviss M: The impacts of prepared plasma-Activated medium
(PAM) combined with doxorubicin on the viability of MCF-7 breast
cancer cells: A new cancer treatment strategy. Rep Biochem Mol
Biol. 10:640–652. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yan D, Sherman JH and Keidar M: Cold
atmospheric plasma, a novel promising anti-cancer treatment
modality. Oncotarget. 8:15977–15995. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yan D, Cui H, Zhu W, Nourmohammadi N,
Milberg J, Zhang LG, Sherman JH and Keidar M: The specific
vulnerabilities of cancer cells to the cold atmospheric
plasma-stimulated solutions. Sci Rep. 7:4412–4479. 2017.PubMed/NCBI
|
11
|
Privat-Maldonado A, Schmidt A, Lin A,
Weltmann KD, Wende K, Bogaerts A and Bekeschus S: ROS from physical
plasmas: Redox chemistry for biomedical therapy. Oxid Med Cell
Longev. 2019:90620982019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gan L, Zhang S, Poorun D, Liu D, Lu X, He
M, Duan X and Chen H: Medical applications of nonthermal
atmospheric pressure plasma in dermatology. J Dtsch Dermatol Ges.
16:7–13. 2018. View Article : Google Scholar
|
13
|
Long GV, Swetter SM, Menzies AM,
Gershenwald JE and Scolyer RA: Cutaneous melanoma. Lancet.
402:485–502. 2023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Leonardi GC, Falzone L, Salemi R, Zanghì
A, Spandidos DA, Mccubrey JA, Candido S and Libra M: Cutaneous
melanoma: From pathogenesis to therapy (Review). Int J Oncol.
52:1071–1080. 2018.PubMed/NCBI
|
15
|
Strashilov S and Yordanov A: Aetiology and
pathogenesis of cutaneous melanoma: Current concepts and advances.
Int J Mol Sci. 22:63952021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Coelho SG and Hearing VJ: UVA tanning is
involved in the increased incidence of skin cancers in fair-skinned
young women. Pigment Cell Melanoma Res. 23:57–63. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Newton-Bishop J, Bishop DT and Harland M:
Melanoma genomics. Acta Derm Venereol. 100:adv1382020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rozeman EA, Dekker TJA, Haanen JBAG and
Blank CU: Advanced melanoma: Current treatment options, biomarkers,
and future perspectives. Am J Clin Dermatol. 19:303–317. 2018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zaib S, Hayyat A, Ali N, Gul A, Naveed M
and Khan I: Role of mitochondrial membrane potential and lactate
dehydrogenase a in apoptosis. Anticancer Agents Med Chem.
22:2048–2062. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jo A, Bae JH, Yoon YJ, Chung TH, Lee EW,
Kim YH, Joh HM and Chung JW: Plasma-activated medium induces
ferroptosis by depleting FSP1 in human lung cancer cells. Cell
Death Dis. 13:2122022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ikeda JI, Tanaka H, Ishikawa K, Sakakita
H, Ikehara Y and Hori M: Plasma-activated medium (PAM) kills human
cancer-initiating cells. Pathol In. 68:23–30. 2018.
|
22
|
Ishikawa K, Hosoi Y, Tanaka H, Jiang L,
Toyokuni S, Nakamura K, Kajiyama H, Kikkawa F, Mizuno M and Hori M:
Non-thermal plasma-activated lactate solution kills U251SP
glioblastoma cells in an innate reductive manner with altered
metabolism. Arch Biochem Biophys. 688:1084142020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Griseti E, Merbahi N and Golzio M:
Anti-cancer potential of two plasma-activated liquids: Implication
of Long-lived reactive oxygen and nitrogen species. Cancers
(Basel). 12:7212020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fang T, Cao X, Shen B, Chen Z and Chen G:
Injectable cold atmospheric plasma-activated immunotherapeutic
hydrogel for enhanced cancer treatment. Biomaterials.
300:1221892023. View Article : Google Scholar : PubMed/NCBI
|
25
|
Solé-Martí X, Espona-Noguera A, Ginebra MP
and Canal C: Plasma-conditioned liquids as anticancer therapies in
vivo: Current state and future directions. Cancers (Basel).
13:4522021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yan D, Talbot A, Nourmohammadi N, Cheng X,
Canady J, Sherman J and Keidar M: Principles of using cold
atmospheric plasma stimulated media for cancer treatment. Sci Rep.
5:183392015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Uchiyama H, Zhao QL, Hassan MA, Andocs G,
Nojima N, Takeda K, Ishikawa K, Hori M and Kondo T: EPR-Spin
trapping and flow cytometric studies of free radicals generated
using cold atmospheric argon plasma and X-Ray irradiation in
aqueous solutions and intracellular milieu. PLoS One.
10:e1369562015. View Article : Google Scholar
|
28
|
Yang X, Yang C, Wang L, Cao Z, Wang Y,
Cheng C, Zhao G and Zhao Y: Inhibition of basal cell carcinoma
cells by cold atmospheric plasma-activated solution and
differential gene expression analysis. Int J Oncol. 56:1262–1273.
2020.PubMed/NCBI
|
29
|
Glorieux C and Calderon PB: Catalase, a
remarkable enzyme: Targeting the oldest antioxidant enzyme to find
a new cancer treatment approach. Biol Chem. 398:1095–1108. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Ahn HJ, Kim KI, Hoan NN, Kim CH, Moon E,
Choi KS, Yang SS and Lee JS: Targeting cancer cells with reactive
oxygen and nitrogen species generated by atmospheric-pressure air
plasma. PLoS One. 9:e861732014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Annesley SJ and Fisher PR: Mitochondria in
health and disease. Cells. 8:6802019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dong L and Neuzil J: ‘Chapter
eight-mitochondria in cancer: Why mitochondria are a good target
for cancer therapy’ in Progress in Molecular Biology and
Translational Science. Osiewacz HD: (Academic Press); pp. 211–227.
2014
|
33
|
Vafai SB and Mootha VK: Mitochondrial
disorders as windows into an ancient organelle. Nature.
491:374–383. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rickard BP, Overchuk M, Chappell VA, Kemal
Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W,
Fenton SE, et al: Methods to evaluate changes in mitochondrial
structure and function in cancer. Cancers (Basel). 15:25642023.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu S, Zhou F, Zhang Z and Xing D:
Mitochondrial oxidative stress causes mitochondrial fragmentation
via differential modulation of mitochondrial fission-fusion
proteins. FEBS J. 278:941–954. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang L, Xia C, Guo Y, Yang C, Cheng C,
Zhao J, Yang X and Cao Z: Bactericidal efficacy of cold atmospheric
plasma treatment against multidrug-resistant Pseudomonas
aeruginosa. Future Microbiol. 15:115–125. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang L, Yang X, Yang C, Gao J, Zhao Y,
Cheng C, Zhao G and Liu S: The inhibition effect of cold
atmospheric plasma-activated media in cutaneous squamous carcinoma
cells. Future Oncol. 15:495–505. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kuo LJ and Yang LX: Gamma-H2AX-a novel
biomarker for DNA double-strand breaks. In Vivo. 22:305–309.
2008.PubMed/NCBI
|
39
|
Vaquero J, Judée F, Vallette M, Decauchy
H, Arbelaiz A, Aoudjehane L, Scatton O, Gonzalez-Sanchez E,
Merabtene F, Augustin J, et al: Cold-atmospheric plasma induces
tumor cell death in preclinical in vivo and in vitro models of
human cholangiocarcinoma. Cancers (Basel). 12:12802020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tanaka H, Nakamura K, Mizuno M, Ishikawa
K, Takeda K, Kajiyama H, Utsumi F, Kikkawa F and Hori M:
Non-thermal atmospheric pressure plasma activates lactate in
Ringer's solution for anti-tumor effects. Sci Rep. 6:362822016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Nastasa V, Pasca AS, Malancus RN,
Bostanaru AC, Ailincai LI, Ursu EL, Vasiliu AL, Minea B, Hnatiuc E
and Mares M: Toxicity assessment of long-term exposure to
non-thermal plasma activated water in mice. Int J Mol Sci.
22:115342021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dasari S and Tchounwou PB: Cisplatin in
cancer therapy: Molecular mechanisms of action. Eur J Pharmacol.
740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI
|