Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review)
- Authors:
- Chanqi Yuan
-
Affiliations: Department of Geriatrics, Harbin 242 Hospital, Harbin, Heilongjiang 150060, P.R. China - Published online on: December 17, 2024 https://doi.org/10.3892/ol.2024.14850
- Article Number: 104
-
Copyright: © Yuan . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hussain H: Effectiveness of exercise interventions on body composition and functional outcomes in sarcopenia: A systematic review. Clin Med (Lond). 23 (Suppl 6):S762023. View Article : Google Scholar | |
Gay-As MU, Lee SC and Lai FC: Sarcopenia among older people in the philippines: A scoping review. Creat Nurs. 30:133–144. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Jiang X, Zhong Q, Zhang Y, Zhang H, Liu Z and Wang X: Possible sarcopenia and risk of chronic kidney disease: A four-year follow-up study and Mendelian randomization analysis. Endocr Res. 49:165–178. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bali T, Chrysavgis L and Cholongitas E: Metabolic-Associated fatty liver disease and sarcopenia. Endocrinol Metab Clin North Am. 52:497–508. 2023. View Article : Google Scholar : PubMed/NCBI | |
Blagec P, Sara S, Tripalo Batos A, Trivic Mazuranic I, Mocic Pavic A, Misak Z and Hojsak I: Magnetic resonance imaging can be used to assess sarcopenia in children with newly diagnosed crohn's disease. Nutrients. 15:38382023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Tian L: Research progress on the predictive role of sarcopenia in the course and prognosis of inflammatory bowel disease. PeerJ. 11:e164212023. View Article : Google Scholar : PubMed/NCBI | |
Liu QW, Mao CJ, Lu ZH, Shi RF, Zhang YC, Zhao P and Liu CF: Sarcopenia is associated with non-motor symptoms in Han Chinese patients with Parkinson's Disease: A cross-sectional study. BMC Geriatr. 23:4942023. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Kim D, Kang H, Park S, Kim S and Yoo JI: A machine learning model for prediction of sarcopenia in patients with Parkinson's Disease. PLoS One. 19:e02962822024. View Article : Google Scholar : PubMed/NCBI | |
Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q and Peng L: Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr. 10:12146842023. View Article : Google Scholar : PubMed/NCBI | |
Pedauye-Rueda B, Garcia-Fernandez P, Maicas-Perez L, Mate-Munoz JL and Hernandez-Lougedo J: Different diagnostic criteria for determining the prevalence of sarcopenia in older adults: A systematic review. J Clin Med. 13:25202024. View Article : Google Scholar : PubMed/NCBI | |
He Y, Cui W, Fang T, Zhang Z and Zeng M: Metabolites of the gut microbiota may serve as precise diagnostic markers for sarcopenia in the elderly. Front Microbiol. 14:13018052023. View Article : Google Scholar : PubMed/NCBI | |
Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma JM, Zhang H, et al: The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 11:eaan56622019. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Li H, Xie R, Lin L, Ding L, Cheng X, Xu J, Bai L and Qiao Y: Relationships between sarcopenia, nutrient intake, and gut microbiota in Chinese community-dwelling older women. Arch Gerontol Geriatr. 113:1050632023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Li X, Huang T, Zhang S, Teng K, Rousitemu N, Lan T and Wen Y: Alterations in the diversity, composition and function of the gut microbiota in Uyghur individuals with sarcopenia. Exp Gerontol. 187:1123762024. View Article : Google Scholar : PubMed/NCBI | |
Picca A, Fanelli F, Calvani R, Mule G, Pesce V, Sisto A, Pantanelli C, Bernabei R, Landi F and Marzetti E: Gut dysbiosis and muscle aging: Searching for Novel Targets against Sarcopenia. Mediators Inflamm. 2018:70261982018. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Cheung WH, Li J, Chow SK, Yu J, Wong SH, Ip M, Sung JJY and Wong RMY: Understanding the gut microbiota and sarcopenia: A systematic review. J Cachexia Sarcopenia Muscle. 12:1393–1407. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aboshady HM, Gavriilidou A, Ghanem N, Radwan MA, Elnahas A, Agamy R, Fahim NH, Elsawy MH, Shaarawy ABM, Abdel-Hafeez AM, et al: Gut microbiota diversity of local egyptian cattle managed in different ecosystems. Animals (Basel). 14:27522024. View Article : Google Scholar : PubMed/NCBI | |
Lim X, Ooi L, Ding U, Wu HHL and Chinnadurai R: Gut microbiota in patients receiving dialysis: A review. Pathogens. 13:8012024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yin J, Wan D and Yin Y: The role of iron in intestinal mucus: Perspectives from both the host and gut microbiota. Adv Nutr. 15:1003072024. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q and Kuca K: Age-associated changes in innate and adaptive immunity: Role of the gut microbiota. Front Immunol. 15:14210622024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhu Y, Guo Q, Wang W and Zhang L: High-throughput sequencing analysis of the characteristics of the gut microbiota in aged patients with sarcopenia. Exp Gerontol. 182:1122872023. View Article : Google Scholar : PubMed/NCBI | |
Casati M, Ferri E, Azzolino D, Cesari M and Arosio B: Gut microbiota and physical frailty through the mediation of sarcopenia. Exp Gerontol. 124:1106392019. View Article : Google Scholar : PubMed/NCBI | |
Tang J and Zhang H, Yin L, Zhou Q and Zhang H: The gut microbiota from maintenance hemodialysis patients with sarcopenia influences muscle function in mice. Front Cell Infect Microbiol. 13:12259912023. View Article : Google Scholar : PubMed/NCBI | |
O'Toole PW and Jeffery IB: Microbiome-health interactions in older people. Cell Mol Life Sci. 75:119–128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, et al: Gut microbiota composition correlates with diet and health in the elderly. Nature. 488:178–184. 2012. View Article : Google Scholar : PubMed/NCBI | |
Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C and Brigidi P: Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacol Res. 69:11–20. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ning M, An L, Dong L, Zhu R, Hao J, Liu X and Zhang Y: Causal associations between gut microbiota, gut microbiota-derived metabolites, and Alzheimer's Disease: A Multivariable Mendelian Randomization Study. J Alzheimers Dis. 100:229–237. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Gong X, Zhang C, Yang T and Pei D: A multi-omics approach to investigate characteristics of gut microbiota and metabolites in hypertension and diabetic nephropathy SPF rat models. Front Microbiol. 15:13561762024. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Kim JH, Lee DY and Hur SJ: Characterization of gut microbiota in mouse models of aging and sarcopenia. Microbiol Res. 275:1274622023. View Article : Google Scholar : PubMed/NCBI | |
Yan ZX, Gao XJ, Li T, Wei B, Wang PP, Yang Y and Yan R: Fecal microbiota transplantation in experimental ulcerative colitis reveals associated gut microbial and host metabolic reprogramming. Appl Environ Microbiol. 84:e00434–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qaisar R, Burki A, Karim A, Iqbal MS and Ahmad F: Probiotics supplements improve the sarcopenia-related quality of life in older adults with age-related muscle decline. Calcif Tissue Int. 114:583–591. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nistor-Cseppento CD, Moga TD, Bungau AF, Tit DM, Negrut N, Pasca B, Bochis CF, Ghitea TC, Jurcau A, Purza AL and Uivarosan D: The contribution of diet therapy and probiotics in the treatment of sarcopenia induced by prolonged immobilization caused by the COVID-19 Pandemic. Nutrients. 14:47012022. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Li P, Li B, Yu F, Zhao W, Wang X, Wang X, Wang Y, Gao H, Cheng M and Li X: d-pinitol improves diabetic sarcopenia by regulation of the gut microbiome, metabolome, and proteome in STZ-Induced SAMP8 Mice. J Agric Food Chem. 72:14466–14478. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mo X, Shen L, Cheng R, Wang P, Wen L, Sun Y, Wang Q, Chen J, Lin S, Liao Y, et al: Faecal microbiota transplantation from young rats attenuates age-related sarcopenia revealed by multiomics analysis. J Cachexia Sarcopenia Muscle. 14:2168–2183. 2023. View Article : Google Scholar : PubMed/NCBI | |
Baek JS, Shin YJ, Ma X, Park HS, Hwang YH and Kim DH: Bifidobacterium bifidum and Lactobacillus paracasei alleviate sarcopenia and cognitive impairment in aged mice by regulating gut microbiota-mediated AKT, NF-ĸB, and FOXO3a signaling pathways. Immun Ageing. 20:562023. View Article : Google Scholar : PubMed/NCBI | |
Lou J, Wang Q, Wan X and Cheng J: Changes and correlation analysis of intestinal microflora composition, inflammatory index, and skeletal muscle mass in elderly patients with sarcopenia. Geriatr Gerontol Int. 24:140–146. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Kang M, Yoo J, Lee S, Kang M, Yun B, Kim JN, Moon H, Chung Y and Oh S: Lactobacillus rhamnosus JY02 ameliorates sarcopenia by anti-atrophic effects in a dexamethasone-induced cellular and murine model. J Microbiol Biotechnol. 33:915–925. 2023. View Article : Google Scholar : PubMed/NCBI | |
Karimian S, Farahmandzad N and Mohammadipanah F: Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol. 40:652024. View Article : Google Scholar : PubMed/NCBI | |
Zahr R, Zahr S, El Hajj R and Khalil M: Characterization of Actinobacteria strains in Lebanese soil with an emphasis on investigating their antibacterial activity. Braz J Microbiol. 55:255–267. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Xu X, Deji Y, Gao S, Wu C, Song Q, Shi Z, Xiang X, Zang J and Su J: Bifidobacterium as a potential biomarker of Sarcopenia in elderly women. Nutrients. 15:12662023. View Article : Google Scholar : PubMed/NCBI | |
Lv WQ, Lin X, Shen H, Liu HM, Qiu X, Li BY, Shen WD, Ge CL, Lv FY, Shen J, et al: Human gut microbiome impacts skeletal muscle mass via gut microbial synthesis of the short-chain fatty acid butyrate among healthy menopausal women. J Cachexia Sarcopenia Muscle. 12:1860–1870. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sugimura Y, Yang Y, Kanda A, Mawatari A, Tamada Y, Mikami T, Nakaji S and Ihara K: Association between Gut Microbiota and Muscle Strength in Japanese General Population of the Iwaki Health Promotion Project. Microorganisms. 12:6222024. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Ren F, Zhou Y, He Y, Du T and Tan Y: Age-related sarcopenia and altered gut microbiota: A systematic review. Microb Pathog. 195:1068502024. View Article : Google Scholar : PubMed/NCBI | |
Ticinesi A, Nouvenne A, Cerundolo N, Catania P, Prati B, Tana C and Meschi T: Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcopenia. Nutrients. 11:16332019. View Article : Google Scholar : PubMed/NCBI | |
Aliwa B, Horvath A, Traub J, Feldbacher N, Habisch H, Fauler G, Madl T and Stadlbauer V: Altered gut microbiome, bile acid composition and metabolome in sarcopenia in liver cirrhosis. J Cachexia Sarcopenia Muscle. 14:2676–2691. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Y, Lane NE, Wu J, Yang T, Li J, He H, Wei J, Zeng C and Lei G: Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia: Data from the Xiangya Sarcopenia Study. J Cachexia Sarcopenia Muscle. 13:2340–2351. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee YA, Song SW, Jung SY, Bae J, Hwang N and Kim HN: Sarcopenia in community-dwelling older adults is associated with the diversity and composition of the gut microbiota. Exp Gerontol. 167:1119272022. View Article : Google Scholar : PubMed/NCBI | |
Shan Z, Cheng N, Zhu J, Chen F and Ji J: Meilibana: Analysis of intestinal flora in elderly Uygur patients with sarcopenia. Immun Inflamm Dis. 12:e10972024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wu J, Tang J, Xu Z, Zhou B, Liu Y, Hu F, Zhang G, Cheng R, Xia X, et al: Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline. J Cachexia Sarcopenia Muscle. 14:2275–2288. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tseng CW, Kyme P, Low J, Rocha MA, Alsabeh R, Miller LG, Otto M, Arditi M, Diep BA, Nizet V, et al: Staphylococcus aureus Panton-Valentine leukocidin contributes to inflammation and muscle tissue injury. PLoS One. 4:e63872009. View Article : Google Scholar : PubMed/NCBI | |
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, Gonzalez-Gomez JP, Gonzalez-Torres B, Velazquez-Suarez NY, Martínez-Chávez L, Martínez-Gonzáles NE, De la Cruz-Color L, Ibarra-Velázquez LM, et al: Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front Microbiol. 13:10017002022. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Yi J, Zhang YG, Zhou J and Sun J: Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 3:e123562015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ogbu D, Garrett S, Xia Y and Sun J: Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes. 13:19968482021. View Article : Google Scholar : PubMed/NCBI | |
Bin-Jumah MN, Gilani SJ, Hosawi S, Al-Abbasi FA, Zeyadi M, Imam SS, Alshehri S, Ghoneim MM, Nadeem MS and Kazmi I: Pathobiological relationship of excessive dietary intake of Choline/L-Carnitine: A TMAO precursor-associated aggravation in heart failure in sarcopenic patients. Nutrients. 13:34532021. View Article : Google Scholar : PubMed/NCBI | |
Hata S, Okamura T, Kobayashi A, Bamba R, Miyoshi T, Nakajima H, Hashimoto Y, Majima S, Senmaru T, Okada H, et al: Gut Microbiota Changes by an SGLT2 inhibitor, luseogliflozin, alters metabolites compared with those in a low carbohydrate diet in db/db Mice. Nutrients. 14:35312022. View Article : Google Scholar : PubMed/NCBI | |
Potgens SA, Brossel H, Sboarina M, Catry E, Cani PD, Neyrinck AM, Delzenne NM and Bindels LB: Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Sci Rep. 8:123212018. View Article : Google Scholar : PubMed/NCBI | |
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL and Liu Q: The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res. 288:1278382024. View Article : Google Scholar : PubMed/NCBI | |
Bourqqia-Ramzi M, Mansilla-Guardiola J, Munoz-Rodriguez D, Quarta E, Lombardo-Hernandez J, Murciano-Cespedosa A, Conejero-Meca FJ, Mateos González Á, Geuna S, Garcia-Esteban MT and Herrera-Rincon C: From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis. Int J Mol Sci. 25:62332024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yu Y and Wang J: Protein nutritional support: The classical and potential new mechanisms in the prevention and therapy of sarcopenia. J Agric Food Chem. 68:4098–4108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mendes J, Simoes CD, Martins JO and Sousa AS: Inflammatory bowel disease and sarcopenia: A focus on muscle strength - narrative review. Arq Gastroenterol. 60:373–382. 2023. View Article : Google Scholar : PubMed/NCBI | |
Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V and Donati Zeppa S: An integrated approach to skeletal muscle health in aging. Nutrients. 15:18022023. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Chen X, Cai R, Chen X, Zhang J, Xie J and Shen M: Sulfated Chinese yam polysaccharides alleviate LPS-induced acute inflammation in mice through modulating intestinal microbiota. Foods. 12:17722023. View Article : Google Scholar : PubMed/NCBI | |
Li C, Wang Y, Zhao X, Li J, Wang H, Ren Y, Sun H, Zhu X, Song Q and Wang J: Comparative analysis of intestinal inflammation and microbiota dysbiosis of LPS-Challenged Piglets between Different Breeds. Animals (Basel). 14:6652024. View Article : Google Scholar : PubMed/NCBI | |
Bian AL, Hu HY, Rong YD, Wang J, Wang JX and Zhou XZ: A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res. 22:252017. View Article : Google Scholar : PubMed/NCBI | |
Xuekelati S, Maimaitiwusiman Z, Bai X, Xiang H, Li Y and Wang H: Sarcopenia is associated with hypomethylation of TWEAK and increased plasma levels of TWEAK and its downstream inflammatory factor TNF-α in older adults: A case-control study. Exp Gerontol. 188:1123902024. View Article : Google Scholar : PubMed/NCBI | |
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 54:2325–2340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Kang M, Yoo J, Lee J, Lee S, Yun B, Song M, Kim JM, Kim HW, Yang J, et al: Dietary supplementation with Lacticaseibacillus rhamnosus IDCC3201 alleviates sarcopenia by modulating the gut microbiota and metabolites in dexamethasone-induced models. Food Funct. 15:4936–4953. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Mao T, Wang Y, Qi X, Zhao W, Chen H, Zhang C and Li X: Effect of gut microbiota-mediated tryptophan metabolism on inflammaging in frailty and sarcopenia. J Gerontol A Biol Sci Med Sci. 79:glae0442024. View Article : Google Scholar : PubMed/NCBI | |
Ciernikova S, Sevcikova A, Mladosievicova B and Mego M: Microbiome in cancer development and treatment. Microorganisms. 12:242023. View Article : Google Scholar : PubMed/NCBI | |
Gellhaus B, Boker KO, Schilling AF and Saul D: Therapeutic consequences of targeting the IGF-1/PI3K/AKT/FOXO3 axis in sarcopenia: A narrative review. Cells. 12:27872023. View Article : Google Scholar : PubMed/NCBI | |
Abuduwaili H, Kamoshita K, Ishii KA, Takahashi K, Abuduyimiti T, Qifang L, Isobe Y, Goto H, Nakano Y, Takeshita Y, et al: Selenoprotein P deficiency protects against immobilization-induced muscle atrophy by suppressing atrophy-related E3 ubiquitin ligases. Am J Physiol Endocrinol Metab. 324:E542–E552. 2023. View Article : Google Scholar : PubMed/NCBI | |
He P, Du G, Qin X and Li Z: Reduced energy metabolism contributing to aging of skeletal muscle by serum metabolomics and gut microbiota analysis. Life Sci. 323:1216192023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yang G, Jiang S, Ji B, Xie W, Li H, Sun J and Li Y: Causal relationship between gut microbiota, metabolites, and sarcopenia: A mendelian randomization study. J Gerontol A Biol Sci Med Sci. 79:glae1732024. View Article : Google Scholar : PubMed/NCBI | |
Cailleaux PE, Dechelotte P and Coeffier M: Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care. 27:234–243. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lapauw L, Rutten A, Dupont J, Amini N, Vercauteren L, Derrien M, Raes J and Gielen E: Associations between gut microbiota and sarcopenia or its defining parameters in older adults: A systematic review. J Cachexia Sarcopenia Muscle. Aug 27–2024.(Epub ahead of print). View Article : Google Scholar | |
Han DS, Wu WK, Liu PY, Yang YT, Hsu HC, Kuo CH, Wu MS and Wang TG: Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle mass. Clin Nutr. 41:1491–1500. 2022. View Article : Google Scholar : PubMed/NCBI | |
de Conti A, Tryndyak V, Koturbash I, Heidor R, Kuroiwa-Trzmielina J, Ong TP, Beland FA, Moreno FS and Pogribny IP: The chemopreventive activity of the butyric acid prodrug tributyrin in experimental rat hepatocarcinogenesis is associated with p53 acetylation and activation of the p53 apoptotic signaling pathway. Carcinogenesis. 34:1900–1906. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Mena P and Meschi T: The interaction between Mediterranean diet and intestinal microbiome: Relevance for preventive strategies against frailty in older individuals. Aging Clin Exp Res. 36:582024. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Gu W, Yang X, Zeng L, Wang X, Mu J, Wang Y, Li F, Yang M and Yu J: Crosstalk between polygonatum kingianum, the miRNA, and gut microbiota in the regulation of lipid metabolism. Front Pharmacol. 12:7405282021. View Article : Google Scholar : PubMed/NCBI | |
Prukpitikul P, Sirivarasai J and Sutjarit N: The molecular mechanisms underlying gut microbiota-miRNA interaction in metabolic disorders. Benef Microbes. 15:83–96. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang LY, Lim AY, Hsu CC, Tsai YF, Fu TC, Shyu YC, Peng SC and Wang JS: Sustainability of exercise-induced benefits on circulating MicroRNAs and physical fitness in community-dwelling older adults: A randomized controlled trial with follow up. BMC Geriatr. 24:4732024. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Kim YI, Nirmala FS, Kim JS, Seo HD, Ha TY, Jang YJ, Jung CH and Ahn J: MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging (Albany NY). 13:4881–4894. 2021. View Article : Google Scholar : PubMed/NCBI | |
Iannone F, Montesanto A, Cione E, Crocco P, Caroleo MC, Dato S, Rose G and Passarino G: Expression patterns of muscle-specific miR-133b and miR-206 correlate with nutritional status and sarcopenia. Nutrients. 12:2972020. View Article : Google Scholar : PubMed/NCBI | |
Chen FX, Shen Y, Liu Y, Wang HF, Liang CY and Luo M: Inflammation-dependent downregulation of miR-532-3p mediates apoptotic signaling in human sarcopenia through targeting BAK1. Int J Biol Sci. 16:1481–1494. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Yang Z, Liu H, Guo M, Chen B, Zhu H, Wang Y, Lin J, Wang S and Chen S: Effects of acupuncture on the miR-146a-mediated IRAK1/TRAF6/NF-ĸB signaling pathway in rats with sarcopenia induced by D-galactose. Ann Transl Med. 11:472023. View Article : Google Scholar : PubMed/NCBI | |
Okugawa Y, Yao L, Toiyama Y, Yamamoto A, Shigemori T, Yin C, Omura Y, Ide S, Kitajima T, Shimura T, et al: Prognostic impact of sarcopenia and its correlation with circulating miR-21 in colorectal cancer patients. Oncol Rep. 39:1555–1564. 2018.PubMed/NCBI | |
Wang W, Liu W, Xu J and Jin H: MiR-33a targets FOSL1 and EN2 as a clinical prognostic marker for sarcopenia by glioma. Front Genet. 13:9535802022. View Article : Google Scholar : PubMed/NCBI | |
He N, Zhang Y, Zhang Y, Feng B, Zheng Z and Ye H: Circulating miR-29b decrease in response to sarcopenia in patients with cardiovascular risk factors in older Chinese. Front Cardiovasc Med. 9:10943882022. View Article : Google Scholar : PubMed/NCBI | |
Qaisar R, Karim A, Muhammad T, Shah I and Khan J: Circulating MicroRNAs as biomarkers of accelerated sarcopenia in chronic heart failure. Glob Heart. 16:562021. View Article : Google Scholar : PubMed/NCBI | |
Faraldi M, Sansoni V, Vitale J, Perego S, Gomarasca M, Verdelli C, Messina C, Sconfienza LM, Banfi G, Corbetta S and Lombardi G: Plasma microRNA signature associated with skeletal muscle wasting in post-menopausal osteoporotic women. J Cachexia Sarcopenia Muscle. 15:690–701. 2024. View Article : Google Scholar : PubMed/NCBI | |
He N, Zhang YL, Zhang Y, Feng B, Zheng Z, Wang D, Zhang S, Guo Q and Ye H: Circulating MicroRNAs in plasma decrease in response to sarcopenia in the elderly. Front Genet. 11:1672020. View Article : Google Scholar : PubMed/NCBI | |
Salamanna F, Contartese D, Ruffilli A, Barile F, Bellavia D, Marchese L, Manzetti M, Viroli G, Faldini C and Giavaresi G: Sharing circulating Micro-RNAs between osteoporosis and sarcopenia: A systematic review. Life (Basel). 13:6022023.PubMed/NCBI | |
Li Z, Liu C, Li S, Li T, Li Y, Wang N, Bao X, Xue P and Liu S: BMSC-derived exosomes inhibit dexamethasone-induced muscle atrophy via the miR-486-5p/FoxO1 Axis. Front Endocrinol (Lausanne). 12:6812672021. View Article : Google Scholar : PubMed/NCBI | |
Che J, Xu C, Wu Y, Jia P, Han Q, Ma Y, Wang X and Zheng Y: MiR-1290 promotes myoblast differentiation and protects against myotube atrophy via Akt/p70/FoxO3 pathway regulation. Skelet Muscle. 11:62021. View Article : Google Scholar : PubMed/NCBI | |
Ahmad N, Kushwaha P, Karvande A, Tripathi AK, Kothari P, Adhikary S, Khedgikar V, Mishra VK and Trivedi R: MicroRNA-672-5p identified during weaning reverses osteopenia and sarcopenia in ovariectomized mice. Mol Ther Nucleic Acids. 14:536–549. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stewart-Hunt L, Pratt-Phillips S, McCutcheon LJ and Geor RJ: Dietary energy source and physical conditioning affect insulin sensitivity and skeletal muscle glucose metabolism in horses. Equine Vet J. Suppl (38):355–360. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barres R and Zierath JR: The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol. 12:441–451. 2016. View Article : Google Scholar : PubMed/NCBI | |
Critchlow AJ, Williams RM and Alexander SE: The PoWeR of exercise: Exploring the anti-ageing effects of exercise through epigenetic modifications to skeletal muscle. J Physiol. 601:1175–1177. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sohi G and Dilworth FJ: Noncoding RNAs as epigenetic mediators of skeletal muscle regeneration. FEBS J. 282:1630–1646. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pinheiro A and Naya FJ: The Key Lnc (RNA)s in cardiac and skeletal muscle development, regeneration, and disease. J Cardiovasc Dev Dis. 8:842021.PubMed/NCBI | |
Human Microbiome Project Consortium, . Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Quigley EM: Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 9:560–569. 2013.PubMed/NCBI | |
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, et al: Best practices for analysing microbiomes. Nat Rev Microbiol. 16:410–422. 2018. View Article : Google Scholar : PubMed/NCBI | |
Collins SL, Stine JG, Bisanz JE, Okafor CD and Patterson AD: Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat Rev Microbiol. 21:236–247. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lapiere A and Richard ML: Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: A short review. Gut Microbes. 14:21056102022. View Article : Google Scholar : PubMed/NCBI | |
Wagner J, Kancherla J, Braccia D, Matsumara J, Felix V, Crabtree J, Mahurkar A and Corrada Bravo H: Interactive exploratory data analysis of integrative human microbiome project data using metaviz. F1000Res. 9:6012020. View Article : Google Scholar : PubMed/NCBI | |
Rahman S, Ikram AR, Azeem F, Tahir Ul Qamar M, Shaheen T and Mehboob-Ur-Rahman: Precision genome editing with CRISPR-Cas9. Methods Mol Biol. 2788:355–372. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li C, Yan J, Liao Y, Qin C, Wang L, Huang Y, Yang C, Wang J, Ding X, et al: Polymeric micellar nanoparticles for effective CRISPR/Cas9 genome editing in cancer. Biomaterials. 309:1225732024. View Article : Google Scholar : PubMed/NCBI | |
Adlard B, Donaldson SG, Odland JO, Weihe P, Berner J, Carlsen A, Bonefeld-Jorgensen EC, Dudarev AA, Gibson JC, Krümmel EM, et al: Future directions for monitoring and human health research for the arctic monitoring and assessment programme. Glob Health Action. 11:14800842018. View Article : Google Scholar : PubMed/NCBI | |
Jackson R, Yao T, Bulut N, Cantu-Jungles TM and Hamaker BR: Protein combined with certain dietary fibers increases butyrate production in gut microbiota fermentation. Food Funct. 15:3186–3198. 2024. View Article : Google Scholar : PubMed/NCBI | |
Modoux M, Rolhion N, Lefevre JH, Oeuvray C, Nadvornik P, Illes P, Emond P, Parc Y, Mani S, Dvorak Z and Sokol H: Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes. 14:21056372022. View Article : Google Scholar : PubMed/NCBI | |
Wan F, Deng FL, Chen L, Zhong RQ, Wang MY, Yi B, Liu L, Zhao HB and Zhang HF: Long-term chemically protected sodium butyrate supplementation in broilers as an antibiotic alternative to dynamically modulate gut microbiota. Poult Sci. 101:1022212022. View Article : Google Scholar : PubMed/NCBI | |
Drut A, Mkaouar H, Kriaa A, Mariaule V, Akermi N, Meric T, Sénécat O, Maguin E, Hernandez J and Rhimi M: Gut microbiota in cats with inflammatory bowel disease and low-grade intestinal T-cell lymphoma. Front Microbiol. 15:13466392024. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Huang S, Liao Y, Wu X, Zhang C, Wang X and Yang Z: Hippuric acid alleviates dextran sulfate sodium-induced colitis via suppressing inflammatory activity and modulating gut microbiota. Biochem Biophys Res Commun. 710:1498792024. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, Liu B, Li D, Cui Y, Wang Z, et al: Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int J Biol Macromol. 261((Pt 1)): 1296962024. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Xiong R, Li Y, Chen J and Yan R: Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun. 141:1030622023. View Article : Google Scholar : PubMed/NCBI | |
Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, Viggiano A, Cibelli G, Chieffi S, Monda M and Messina G: Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017:38319722017. View Article : Google Scholar : PubMed/NCBI | |
Mimee M, Tucker AC, Voigt CA and Lu TK: Programming a human commensal bacterium, bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2:2142016. View Article : Google Scholar : PubMed/NCBI | |
Das S, Preethi B, Kushwaha S and Shrivastava R: Therapeutic strategies to modulate gut microbial health: Approaches for sarcopenia management. Histol Histopathol. 39:1395–1425. 2024.PubMed/NCBI | |
Li T, Yin D and Shi R: Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr. 11:14187782024. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Cheng JK and Hu YM: Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev. 81:1017392022. View Article : Google Scholar : PubMed/NCBI |