1
|
Pinkiewicz M, Dorobisz K and Zatoński T:
Human papillomavirus-associated head and neck cancers. Where are we
now? A systematic review. Cancer Manag Res. 14:3313–3324. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
HPV Information Centre, . Human
Papillomavirus and Related Diseases Report: WORLD. https://hpvcentre.net/statistics/reports/XWX.pdfOctober
10–2024
|
3
|
Mallath MK, Taylor DG, Badwe RA, Rath GK,
Shanta V, Pramesh CS, Digumarti R, Sebastian P, Borthakur BB,
Kalwar A, et al: The growing burden of cancer in India:
Epidemiology and social context. Lancet Oncol. 15:e205–e212. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Powell SF, Vu L, Spanos WC and Pyeon D:
The key differences between human papillomavirus-positive and
-negative head and neck cancers: Biological and clinical
implications. Cancers (Basel). 13:52062021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jiang X, Wu J, Wang J and Huang R: Tobacco
and oral squamous cell carcinoma: A review of carcinogenic
pathways. Tob Induc Dis. 17:292019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Findik S, Findik S, Abuoğlu S, Cihan FG,
Ilter H and Iyisoy MS: Human papillomavirus (HPV) subtypes and
their relationships with cervical smear results in cervical cancer
screening: A community-based study from the central Anatolia region
of Turkey. Int J Clin Exp Pathol. 12:1391–1398. 2019.PubMed/NCBI
|
7
|
Pathak P, Pajai S and Kesharwani H: A
review on the use of the HPV vaccine in the prevention of cervical
cancer. Cureus. 14:e287102022.PubMed/NCBI
|
8
|
Comparetto C and Borruto F: Human
papillomavirus infection: Overview. Handbook on Human
Papillomavirus: Prevalence, Detection and Management. Nova Science
Publishers; Hauppauge, NY, USA: pp. 1–137. 2013
|
9
|
Kumaraswamy KL and Vidhya M: Human
papilloma virus and oral infections: An update. J Cancer Res Ther.
7:120–127. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Balaram P, Nalinakumari KR, Abraham E,
Balan A, Hareendran NK, Bernard HU and Chan SY: Human
papillomaviruses in 91 oral cancers from Indian betel quid
chewers-high prevalence and multiplicity of infections. Int J
Cancer. 61:450–454. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rader JS, Tsaih SW, Fullin D, Murray MW,
Iden M, Zimmermann MT and Flister MJ: Genetic variations in human
papillomavirus and cervical cancer outcomes. Int J Cancer.
144:2206–2214. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kornhaber MS, Florence T, Davis T and
Kingsley K: Assessment of oral human papillomavirus prevalence in
pediatric and adult patients within a multi-ethnic clinic
population. Dent J (Basel). 10:542022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hamid NA, Brown C and Gaston K: The
regulation of cell proliferation by the papillomavirus early
proteins. Cell Mol Life Sci. 66:1700–1717. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rorke EA: Antisense human papillomavirus
(HPV) E6/E7 expression, reduced stability of epidermal growth
factor, and diminished growth of HPV-positive tumor cells. J Natl
Cancer Inst. 89:1243–1246. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wise-Draper TM and Wells SI:
Papillomavirus E6 and E7 proteins and their cellular targets. Front
Biosci. 13:1003–1017. 2008. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Seville LL, Shah N, Westwell AD and Chan
WC: Modulation of pRB/E2F functions in the regulation of cell cycle
and in cancer. Curr Cancer Drug Targets. 5:159–170. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Mittal S and Banks L: Molecular mechanisms
underlying human papillomavirus E6 and E7 oncoprotein-induced cell
transformation. Mutat Res Rev Mutat Res. 772:23–35. 2027.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Estêvão D, Costa NR, da Costa RMG and
Medeiros R: Hallmarks of HPV carcinogenesis: The role of E6, E7 and
E5 oncoproteins in cellular malignancy. Biochim Biophys Acta Gene
Regul Mech. 1862:153–162. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yeo-Teh NSL, Ito Y and Jha S: High-risk
human papillomaviral oncogenes E6 and E7 target key cellular
pathways to achieve oncogenesis. Int J Mol Sci. 19:17062018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Macalino SJY, Basith S, Clavio NAB, Chang
H, Kang S and Choi S: Evolution of in silico strategies for
protein-protein interaction drug discovery. Molecules. 23:19632018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
McCormack ME, Lopez JA, Crocker TH and
Mukhtar MS: Making the right connections: Network biology and plant
immune system dynamics. Curr Plant Biol. 5:2–12. 2016. View Article : Google Scholar
|
22
|
Yang R, Klimentová J, Göckel-Krzikalla E,
Ly R, Gmelin N, Hotz-Wagenblatt A, Řehulková H, Stulík J, Rösl F
and Niebler M: Combined transcriptome and proteome analysis of
immortalized human keratinocytes expressing human papillomavirus 16
(HPV16) oncogenes reveals novel key factors and networks in
HPV-induced carcinogenesis. mSphere. 4:e00129–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chakraborty S, Hosen MI, Ahmed M and
Shekhar HU: Onco-multi-OMICS approach: A new frontier in cancer
research. Biomed Res Int. 2018:98362562018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Humphreys IR, Pei J, Baek M, Krishnakumar
A, Anishchenko I, Ovchinnikov S, Zhang J, Ness TJ, Banjade S, Bagde
SR, et al: Computed structures of core eukaryotic protein
complexes. Science. 374:eabm48052021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jimenez-Lopez JC, Gachomo EW, Sharma S and
Kotchoni SO: Genome sequencing and next-generation sequence data
analysis: A comprehensive compilation of bioinformatics tools and
databases. Am J Mol Biol. 3:115–130. 2013. View Article : Google Scholar
|
26
|
Wichmann G, Rosolowski M, Krohn K, Kreuz
M, Boehm A, Reiche A, Scharrer U, Halama D, Bertolini J, Bauer U,
et al: The role of HPV RNA transcription, immune response-related
gene expression and disruptive TP53 mutations in diagnostic and
prognostic profiling of head and neck cancer. Int J Cancer.
137:2846–2857. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lohavanichbutr P, Méndez E, Holsinger FC,
Rue TC, Zhang Y, Houck J, Upton MP, Futran N, Schwartz SM, Wang P
and Chen C: A 13-gene signature prognostic of HPV-negative OSCC:
Discovery and external validation. Clin Cancer Res. 19:1197–1203.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pyeon D, Newton MA, Lambert PF, den Boon
JA, Sengupta S, Marsit CJ, Woodworth CD, Connor JP, Haugen TH,
Smith EM, et al: Fundamental differences in cell cycle deregulation
in human papillomavirus-positive and human papillomavirus-negative
head/neck and cervical cancers. Cancer Res. 67:4605–4619. 2007.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sultan G, Zubair S, Tayubi IA, Dahms HU
and Madar IH: Towards the early detection of ductal carcinoma (a
common type of breast cancer) using biomarkers linked to the
PPAR(γ) signaling pathway. Bioinformation. 15:799–805. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Tomaić V: Functional roles of E6 and E7
oncoproteins in HPV-induced malignancies at diverse anatomical
sites. Cancers (Basel). 8:952016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Helt AM and Galloway DA: Destabilization
of the retinoblastoma tumor suppressor by human papillomavirus type
16 E7 is not sufficient to overcome cell cycle arrest in human
keratinocytes. J Virol. 75:6737–6747. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Porter VL and Marra MA: The drivers,
mechanisms, and consequences of genome instability in HPV-driven
cancers. Cancers (Basel). 14:46232022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou Q, Yuan O, Cui H, Hu T, Xiao GG, Wei
J, Zhang H and Wu C: Bioinformatic analysis identifies HPV-related
tumor microenvironment remodeling prognostic biomarkers in head and
neck squamous cell carcinoma. Front Cell Infect Microbiol.
12:10079502022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Feller L, Wood NH, Khammissa RAG and
Lemmer J: Human papillomavirus-mediated carcinogenesis and
HPV-associated oral and oropharyngeal squamous cell carcinoma. Part
1: Human papillomavirus-mediated carcinogenesis. Head Face Med.
6:142010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Smith BN and Bhowmick NA: Role of EMT in
metastasis and therapy resistance. J Clin Med. 5:172016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rubio K, Molina-Herrera A, Pérez-González
A, Hernández-Galdámez HV, Piña-Vázquez C, Araujo-Ramos T and Singh
I: EP300 as a molecular integrator of fibrotic transcriptional
programs. Int J Mol Sci. 24:123022023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Meek DW: Tumour suppression by p53: A role
for the DNA damage response? Nat Rev Cancer. 9:714–723. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Chinnam M, Xu C, Lama R, Zhang X, Cedeno
CD, Wang Y, Stablewski AB, Goodrich DW and Wang X: MDM2 E3 ligase
activity is essential for p53 regulation and cell cycle integrity.
PLoS Genet. 18:e10101712022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Calderwood SK, Sherman MY and Ciocca DR:
Heat shock proteins in cancer. Springer Science & Business
Media; 2007, View Article : Google Scholar
|
41
|
Attar N and Kurdistani SK: Exploitation of
EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring
Harb Perspect Med. 7:a0265342017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li L, Xing W, Jiang L, Chen D and Zhang G:
NR3C1 overexpression regulates the expression and alternative
splicing of inflammation-associated genes involved in PTSD. Gene.
859:1471992023. View Article : Google Scholar : PubMed/NCBI
|
43
|
Smith PL, Lombardi G and Foster GR: Type I
interferons and the innate immune response-more than just antiviral
cytokines. Mol Immunol. 42:869–877. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Juul A and Jorgensen JOL: Growth hormone
in adults: Physiological and clinical aspects. 2nd edition.
Cambridge University Press; 2000, View Article : Google Scholar
|
45
|
Chen J: Signaling pathways in
HPV-associated cancers and therapeutic implications. Rev Med Virol.
25 (Suppl 1):S24–S53. 2015. View Article : Google Scholar
|
46
|
Shahoumi LA and Yeudall WA: Targeted
therapies for non-HPV-related head and neck cancer: Challenges and
opportunities in the context of predictive, preventive, and
personalized medicine. EPMA J. 10:291–305. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bolt R: Novel biomarkers in the management
of HPV-positive &-negative oropharyngeal carcinoma. PhD thesis;
University of Sheffield: 2016
|
48
|
Liouta G, Adamaki M, Tsintarakis A,
Zoumpourlis P, Liouta A, Agelaki S and Zoumpourlis V: DNA
methylation as a diagnostic, prognostic, and predictive biomarker
in head and neck cancer. Int J Mol Sci. 24:29962013. View Article : Google Scholar
|
49
|
Deutsch F, Regina Bullen I, Nguyen K, Tran
NH, Elliott M and Tran N: Current state of play for HPV-positive
oropharyngeal cancers. Cancer Treat Rev. 110:1024392022. View Article : Google Scholar : PubMed/NCBI
|