1
|
van den Bent MJ, Geurts M, French PJ,
Smits M, Capper D, Bromberg JEC and Chang SM: Primary brain tumours
in adults. Lancet. 402:1564–1579. 2023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Salari N, Ghasemi H, Fatahian R, Mansouri
K, Dokaneheifard S, Shiri MH, Hemmati M and Mohammadi M: The global
prevalence of primary central nervous system tumors: A systematic
review and meta-analysis. Eur J Med Res. 28:392023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Weller M, Wen PY, Chang SM, Dirven L, Lim
M, Monje M and Reifenberger G: Glioma. Nat Rev Dis Primers.
10:332024. View Article : Google Scholar : PubMed/NCBI
|
4
|
Grochans S, Cybulska AM, Simińska D,
Korbecki J, Kojder K, Chlubek D and Baranowska-Bosiacka I:
Epidemiology of glioblastoma multiforme-literature review. Cancers
(Basel). 14:24122022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schaff LR and Mellinghoff IK: Glioblastoma
and other primary brain malignancies in adults: A review. JAMA.
329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miller KD, Ostrom QT, Kruchko C, Patil N,
Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL and
Barnholtz-Sloan JS: Brain and other central nervous system tumor
statistics, 2021. CA Cancer J Clin. 71:381–406. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rodríguez-Camacho A, Flores-Vázquez JG,
Moscardini Martelli J, Torres-Ríos JA, Olmos-Guzmán A, Ortiz-Arce
CS, Cid-Sánchez DR, Pérez SR, Macías-González MDS,
Hernández-Sánchez LC, et al: Glioblastoma Treatment:
State-of-the-Art and Future Perspectives. Int J Mol Sci.
23:72022022. View Article : Google Scholar
|
8
|
Czarnywojtek A, Borowska M, Dyrka K, Van
Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T,
Lewandowska AM, et al: Glioblastoma Multiforme: The latest
diagnostics and treatment techniques. Pharmacology. 108:423–431.
2023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Aldoghachi AF, Aldoghachi AF, Breyne K,
Ling KH and Cheah PS: Recent Advances in the therapeutic strategies
of glioblastoma multiforme. Neuroscience. 491:240–270. 2022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Karachi A, Dastmalchi F, Mitchell DA and
Rahman M: Temozolomide for immunomodulation in the treatment of
glioblastoma. Neuro Oncology. 20:1566–1572. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tomar MS, Kumar A, Srivastava C and
Shrivastava A: Elucidating the mechanisms of Temozolomide
resistance in gliomas and the strategies to overcome the
resistance. Biochim Biophys Acta Rev Cancer. 1876:1886162021.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Teraiya M, Perreault H and Chen VC: An
overview of glioblastoma multiforme and temozolomide resistance:
Can LC-MS-based proteomics reveal the fundamental mechanism of
temozolomide resistance? Front Oncol. 13:11662072023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Daisy Precilla S, Biswas I, Kuduvalli SS
and Anitha TS: Crosstalk between PI3K/AKT/mTOR and WNT/β-Catenin
signaling in GBM-Could combination therapy checkmate the collusion?
Cell Signal. 95:1103502022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Khabibov M, Garifullin A, Boumber Y,
Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit
O and Kharin L: Signaling pathways and therapeutic approaches in
glioblastoma multiforme (Review). Int J Oncol. 60:692022.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Guo L and Wu Z: FOXM1-mediated NUF2
expression confers temozolomide resistance to human glioma cells by
regulating autophagy via the PI3K/AKT/mTOR signaling pathway.
Neuropathology. 42:430–446. 2022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zając A, Sumorek-Wiadro J, Langner E,
Wertel I, Maciejczyk A, Pawlikowska-Pawlęga B, Pawelec J, Wasiak M,
Hułas-Stasiak M, Bądziul D, et al: Involvement of PI3K pathway in
glioma cell resistance to temozolomide treatment. Int J Mol Sci.
22:51552021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xiong J, Guo G, Guo L, Wang Z, Chen Z, Nan
Y, Cao Y, Li R, Yang X, Dong J, et al: Amlexanox enhances
temozolomide-induced antitumor effects in human glioblastoma cells
by inhibiting IKBKE and the Akt-mTOR signaling pathway. ACS Omega.
6:4289–4299. 2021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Khoramipour K, Chamari K, Hekmatikar AA,
Ziyaiyan A, Taherkhani S, Elguindy NM and Bragazzi NL: Adiponectin:
Structure, physiological functions, role in diseases, and effects
of nutrition. Nutrients. 13:11802021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Naimo GD, Forestiero M, Paolì A, Malivindi
R, Gelsomino L, Győrffy B, Leonetti AE, Giordano F, Panza S,
Conforti FL, et al: ERα/LKB1 complex upregulates E-cadherin
expression and stimulates breast cancer growth and progression upon
adiponectin exposure. Int J Cancer. 153:1257–1272. 2023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Illiano M, Nigro E, Sapio L, Caiafa I,
Spina A, Scudiero O, Bianco A, Esposito S, Mazzeo F, Pedone PV, et
al: Adiponectin down-regulates CREB and inhibits proliferation of
A549 lung cancer cells. Pulm Pharmacol Ther. 45:114–120. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Nigro E, Orlandella FM, Polito R,
Mariniello RM, Monaco ML, Mallardo M, De Stefano AE, Iervolino PLC,
Salvatore G and Daniele A: Adiponectin and leptin exert
antagonizing effects on proliferation and motility of papillary
thyroid cancer cell lines. J Physiol Biochem. 77:237–248. 2021.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Porcile C, Di Zazzo E, Monaco ML, D'Angelo
G, Passarella D, Russo C, Di Costanzo A, Pattarozzi A, Gatti M,
Bajetto A, et al: Adiponectin as novel regulator of cell
proliferation in human glioblastoma. J Cell Physiol. 229:1444–1454.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang J, Fan Y, Zhang W, Shen Y, Liu T,
Yao M, Gu J, Tu H and Gan Y: Adiponectin suppresses human
pancreatic cancer growth through attenuating the β-Catenin
signaling pathway. Int J Biol Sci. 15:253–264. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Y, Yu C and Deng W: Roles and
mechanisms of adipokines in drug resistance of tumor cells. Eur J
Pharmacol. 899:1740192021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bub JD, Miyazaki T and Iwamoto Y:
Adiponectin as a growth inhibitor in prostate cancer cells. Biochem
Biophys Res Commun. 340:1158–1166. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sun G, Zhang X, Liu Z, Zhu S, Shen P,
Zhang H, Zhang M, Chen N, Zhao J, Chen J, et al: The
Adiponectin-AdipoR1 axis mediates tumor progression and tyrosine
kinase inhibitor resistance in metastatic renal cell carcinoma.
Neoplasia. 21:921–931. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bocian-Jastrzębska A, Malczewska-Herman A
and Kos-Kudła B: Role of leptin and adiponectin in carcinogenesis.
Cancers (Basel). 15:42502023. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fang H and Judd RL: Adiponectin regulation
and function. Compr Physiol. 8:1031–1063. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nigro E, Daniele A, Salzillo A, Ragone A,
Naviglio S and Sapio L: AdipoRon and other adiponectin receptor
agonists as potential candidates in cancer treatments. Int J Mol
Sci. 22:55692021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu X, Chen J and Zhang J:
AdipoR1-mediated miR-3908 inhibits glioblastoma tumorigenicity
through downregulation of STAT2 associated with the AMPK/SIRT1
pathway. Oncol Rep. 37:3387–3396. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jie C, Xuan W, Feng HD, Hua DM, Bo W, Fei
S and Hao Z: AdipoR2 inhibits human glioblastoma cell growth
through the AMPK/mTOR pathway. Eur J Med Res. 26:282021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Byeon JS, Jeong JY, Kim MJ, Lee SM, Nam
WH, Myung SJ, Kim JG, Yang SK, Kim JH and Suh DJ: Adiponectin and
adiponectin receptor in relation to colorectal cancer progression.
Int J Cancer. 127:2758–2767. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jardé T, Caldefie-Chézet F,
Goncalves-Mendes N, Mishellany F, Buechler C, Penault-Llorca F and
Vasson MP: Involvement of adiponectin and leptin in breast cancer:
Clinical and in vitro studies. Endocr Relat Cancer. 16:1197–1210.
2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Williams CJ, Mitsiades N, Sozopoulos E,
His A, Wolk A, Nifli AP, Tseleni-Balafouta S and Mantzoros CS:
Adiponectin receptor expression is elevated in colorectal
carcinomas but not in gastrointestinal stromal tumors. Endocr Relat
Cancer. 15:289–299. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Barzegar Behrooz A, Talaie Z, Jusheghani
F, Łos MJ, Klonisch T and Ghavami S: Wnt and PI3K/Akt/mTOR survival
pathways as therapeutic targets in glioblastoma. Int J Mol Sci.
23:13532022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fattahi S, Amjadi-Moheb F, Tabaripour R,
Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric
cancer: Epigenetics and beyond. Life Sci. 262:1185132020.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Miricescu D, Totan A, Stanescu S II,
Badoiu SC, Stefani C and Greabu M: PI3K/AKT/mTOR signaling pathway
in breast cancer: From molecular landscape to clinical aspects. Int
J Mol Sci. 22:1732020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zheng X, Li W, Xu H, Liu J, Ren L, Yang Y,
Li S, Wang J, Ji T and Du G: Sinomenine ester derivative inhibits
glioblastoma by inducing mitochondria-dependent apoptosis and
autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm Sin B.
11:3465–3480. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang R, Wang M, Zhang G, Bao Y, Wu Y, Li
X, Yang W and Cui H: E2F7-EZH2 axis regulates PTEN/AKT/mTOR
signalling and glioblastoma progression. Br J Cancer.
123:1445–1455. 2020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jiang Y, Liu J, Hong W, Fei X and Liu R:
Arctigenin inhibits glioblastoma proliferation through the AKT/mTOR
pathway and induces autophagy. Biomed Res Int. 2020:35426132020.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Manning BD and Toker A: AKT/PKB Signaling:
Navigating the Network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee SY: Temozolomide resistance in
glioblastoma multiforme. Genes Dis. 3:198–210. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chien CH, Hsueh WT, Chuang JY and Chang
KY: Dissecting the mechanism of temozolomide resistance and its
association with the regulatory roles of intracellular reactive
oxygen species in glioblastoma. J Biomed Sci. 28:182021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Thanasupawat T, Glogowska A, Burg M, Krcek
J, Beiko J, Pitz M, Zhang GJ, Hombach-Klonisch S and Klonisch T:
C1q/TNF-related peptide 8 (CTRP8) promotes temozolomide resistance
in human glioblastoma. Mol Oncol. 12:1464–1479. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun Q, Xu J, Yuan F, Liu Y, Chen Q, Guo L,
Dong H and Liu B: RND1 inhibits epithelial-mesenchymal transition
and temozolomide resistance of glioblastoma via AKT/GSK3-β pathway.
Cancer Biol Ther. 25:23217702024. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wang X, Jia L, Jin X, Liu Q, Cao W, Gao X,
Yang M and Sun B: NF-ĸB inhibitor reverses temozolomide resistance
in human glioma TR/U251 cells. Oncol Lett. 9:2586–2590. 2015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu
WW, Wang K, Gao L, Qi ST and Lu YT: miR-519a enhances
chemosensitivity and promotes autophagy in glioblastoma by
targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 11:702018.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang YN, Zhang XH, Wang YM, Zhang X and Gu
Z: miR-204 reverses temozolomide resistance and inhibits cancer
initiating cells phenotypes by degrading FAP-α in glioblastoma.
Oncol Lett. 15:7563–7570. 2018.PubMed/NCBI
|
49
|
Rao V, Kumar G, Vibhavari RJA, Nandakumar
K, Thorat ND, Chamallamudi MR and Kumar N: Temozolomide Resistance:
A Multifarious Review on Mechanisms Beyond O-6-Methylguanine-DNA
Methyltransferase. CNS Neurol Disord Drug Targets. 22:817–831.
2023. View Article : Google Scholar : PubMed/NCBI
|
50
|
Singh N, Miner A, Hennis L and Mittal S:
Mechanisms of temozolomide resistance in glioblastoma-a
comprehensive review. Cancer Drug Resist. 4:17–43. 2021.PubMed/NCBI
|
51
|
Chen L, Han L, Shi Z, Zhang K, Liu Y,
Zheng Y, Jiang T, Pu P, Jiang C and Kang C: LY294002 enhances
cytotoxicity of temozolomide in glioma by down-regulation of the
PI3K/Akt pathway. Mol Med Rep. 5:575–579. 2012.PubMed/NCBI
|
52
|
Dai X, Ye L, Li H, Dong X, Tian H, Gao P,
Dong J and Cheng H: Crosstalk between microglia and neural stem
cells influences the relapse of glioblastoma in GBM immunological
microenvironment. Clin Immunol. 251:1093332023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Gao P, Wang H, Li H, Shu L, Han Z, Li S,
Cheng H and Dai X: miR-21-5p Inhibits the Proliferation, Migration,
and Invasion of Glioma by Targeting S100A10. J Cancer.
14:1781–1793. 2023. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhou L, Li H, Yao H, Dai X, Gao P and
Cheng H: TMED family genes and their roles in human diseases. Int J
Med Sci. 20:1732–1743. 2023. View Article : Google Scholar : PubMed/NCBI
|