
Targeting leukocyte immunoglobulin‑like receptor B2 in the tumor microenvironment: A new treatment prospect for solid tumors (Review)
- Authors:
- Meng Cao
- Jing Luan
- Cui Zhai
- Huan Liu
- Zhenhao Zhang
- Na Guo
-
Affiliations: Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China - Published online on: February 12, 2025 https://doi.org/10.3892/ol.2025.14927
- Article Number: 181
-
Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Zhang P, Yu S, Li H, Liu C, Li J, Lin W, Gao A, Wang L, Gao W and Sun Y: ILT4 drives B7-H3 expression via PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates with poor prognosis in non-small cell lung cancer. FEBS Lett. 589:2248–2256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao A, Sun Y and Peng G: ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer. 1869:278–285. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S and Yang H: Activation of leukocyte immunoglobulin-like receptor B2 signaling pathway in cortical lesions of pediatric patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Dev. 41:829–838. 2019. View Article : Google Scholar : PubMed/NCBI | |
Borges L and Cosman D: LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev. 11:209–217. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yue J, Li W, Liang C, Chen B, Chen X, Wang L, Zang Z, Yu S, Liu S, Li S and Yang H: Activation of LILRB2 signal pathway in temporal lobe epilepsy patients and in a pilocarpine induced epilepsy model. Exp Neurol. 285:51–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Lu Z, Zheng J, Wan X, Chen X, Hirayasu K, Sun H, Lam Y, Chen L, Wang Q, et al: A motif in LILRB2 critical for Angptl2 binding and activation. Blood. 124:924–935. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang L, Gao W, Li L, Cui X, Yang H, Lin W, Dang Q, Zhang N and Sun Y: Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn Pathol. 9:852014. View Article : Google Scholar : PubMed/NCBI | |
Carosella ED, Gregori S and Tronik-Le Roux D: HLA-G/LILRBs: A cancer immunotherapy challenge. Trends Cancer. 7:389–392. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, Huynh H, Kang X, Silvany R, Wan X, et al: Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature. 485:656–660. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shao H, Ma L, Jin F, Zhou Y, Tao M and Teng Y: Immune inhibitory receptor LILRB2 is critical for the endometrial cancer progression. Biochem Biophys Res Commun. 506:243–250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Liu J, Gao P, Wang Y and Liu C: Expression of Ig-like transcript 4 inhibitory receptor in human non-small cell lung cancer. Chest. 134:783–788. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yu X, Xie J, Zhan M, Yu Z, Xie L, Zeng H, Zhang F, Chen G, Yi X and Zheng J: ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget. 6:21004–21015. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li J, Wang S, Wang J, Chen X, Zhou D, Fang Y, Gao A and Sun Y: Overexpressed immunoglobulin-like transcript (ILT) 4 in lung adenocarcinoma is correlated with immunosuppressive T cell subset infiltration and poor patient outcomes. Biomark Res. 8:112020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wei X, Xu H, Sha Z, Gao A, Sun Y, Li J and Xu L: Expression of leukocyte immunoglobulin-like receptor B2 in hepatocellular carcinoma and its clinical significance. J Cancer Res Ther. 14:1655–1659. 2018. View Article : Google Scholar : PubMed/NCBI | |
He J, Xu J, Yu X, Zhu H, Zeng Y, Fan D and Yi X: Overexpression of ANGPTL2 and LILRB2 as predictive and therapeutic biomarkers for metastasis and prognosis in colorectal cancer. Int J Clin Exp Pathol. 11:2281–2294. 2018.PubMed/NCBI | |
Kun L, Yunyan P, Xiangshan Y, Hongxin N and Junyuan Y: Relationship between HPV 16/18 infection in ovarian cancer patients and expression of ILT4. Chin J Nosocomiol. 24:3901–3903. 2014. | |
García M, Palma MB, Verine J, Miriuka S, Inda AM, Errecalde AL, Desgrandchamps F, Carosella ED and Tronik-Le Roux D: The immune-checkpoint HLA-G/ILT4 is involved in the regulation of VEGF expression in clear cell renal cell carcinoma. BMC Cancer. 20:6242020. View Article : Google Scholar : PubMed/NCBI | |
Gao A, Liu X, Lin W, Wang J, Wang S, Si F, Huang L, Zhao Y, Sun Y and Peng G: Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity. J Immunother Cancer. 9:e0015362021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Deng G, Qi Y, Zhang H, Gao L, Jiang H, Ye Z, Liu B and Chen Q: Bioinformatic profiling of Prognosis-related genes in malignant glioma microenvironment. Med Sci Monit. 26:e9240542020.PubMed/NCBI | |
Chalbatani GM, Momeni SA, Mohammadi Hadloo MH, Karimi Z, Hadizadeh M, Jalali SA, Miri SR, Memari F and Hamblin MR: Comprehensive analysis of ceRNA networks to determine genes related to prognosis, overall survival, and immune infiltration in clear cell renal carcinoma. Comput Biol Med. 141:1050432022. View Article : Google Scholar : PubMed/NCBI | |
Warnecke-Eberz U, Metzger R, Hölscher AH, Drebber U and Bollschweiler E: Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumour Biol. 37:6349–6358. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Gao A, Shi W, Wang J, Zhang X, Xu Z, Xu T, Zheng Y, Sun Y and Yang F: ILT4 in colorectal cancer cells induces suppressive T cell contexture and disease progression. Onco Targets Ther. 14:4239–4254. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Guo X, Li J, Yu S, Wang L, Jiang G, Yang D, Wei Z, Zhang N, Liu J and Sun Y: Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget. 6:13550–13563. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Wang L, Han Y, Gao W, Wei X, Gong R, Zhu M, Sun Y and Yu S: Immunoglobulin-like transcript 4 and human leukocyte antigen-G interaction promotes the progression of human colorectal cancer. Int J Oncol. 54:1943–1954. 2019.PubMed/NCBI | |
Shao H, Ma L, Jin F, Zhou Y, Tao M and Teng Y: Immune inhibitory receptor LILRB2 is critical for the endometrial cancer progression. Biochem Biophys Res Commun. 506:243–250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, et al: Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest. 128:5647–5662. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Han J, Li J, Gu A, Yin D, Song F, Wang L and Yi Y: The expression and function of immunoglobulin-like transcript 4 in dendritic cells from patients with hepatocellular carcinoma. Hum Immunol. 81:714–725. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cho EC, Mitton B and Sakamoto KM: CREB and leukemogenesis. Crit Rev Oncog. 16:37–46. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Li J, Yan P, Gong WJ and Sun YP: Silencing of ILT4 suppresses migration and invasion of non-small cell lung cancer cells by inhibiting MMP-2. Int J Clin Exp Med. 12:5306–5314. 2019. | |
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N and Martinez-Fierro ML: The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 21:97392020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao J, Qiu L, Zhang P, Li J, Yang D, Wei X, Han Y, Nie S and Sun Y: Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling. Tumour Biol. 37:11187–11198. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Gao A, Zhang F, Yang Z, Wang S, Fang Y, Li J, Wang J, Shi W, Wang L, et al: ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation. Theranostics. 11:3392–3416. 2021. View Article : Google Scholar : PubMed/NCBI | |
Carbone C, Piro G, Fassan M, Tamburrino A, Mina MM, Zanotto M, Chiao PJ, Bassi C, Scarpa A, Tortora G and Melisi D: An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis. Oncotarget. 6:13822–13834. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
Gardner A, de Mingo Pulido Á and Ruffell B: Dendritic cells and their role in immunotherapy. Front Immunol. 11:9242020. View Article : Google Scholar : PubMed/NCBI | |
Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D and Suciu-Foca N: High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol. 11:245–258. 2003. View Article : Google Scholar : PubMed/NCBI | |
Guerra-de Blas Pdel C, Villaseñor-Talavera YS, Cruz-González Dde J, Baranda L, Doníz-Padilla L, Abud-Mendoza C, González-Amaro R and Monsiváis-Urenda AE: Analysis of the expression and function of Immunoglobulin-like transcript 4 (ILT4, LILRB2) in dendritic cells from patients with systemic lupus erythematosus. J Immunol Res. 2016:41630942016.PubMed/NCBI | |
Liang S, Ristich V, Arase H, Dausset J, Carosella ED and Horuzsko A: Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6-STAT3 signaling pathway. Proc Natl Acad Sci USA. 105:8357–8362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Trojandt S, Bellinghausen I, Reske-Kunz AB and Bros M: Tumor-derived immuno-modulators induce overlapping pro-tolerogenic gene expression signatures in human dendritic cells. Hum Immunol. 77:1223–1231. 2016. View Article : Google Scholar : PubMed/NCBI | |
Svajger U, Obermajer N and Jeras M: IFN-γ-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol. 95:33–46. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brenk M, Scheler M, Koch S, Neumann J, Takikawa O, Häcker G, Bieber T and von Bubnoff D: Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells. J Immunol. 183:145–154. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gregori S, Magnani CF and Roncarolo MG: Role of human leukocyte antigen-G in the induction of adaptive type 1 regulatory T cells. Hum Immunol. 70:966–969. 2009. View Article : Google Scholar : PubMed/NCBI | |
Imada M, Masuda K, Satoh R, Ito Y, Goto Y, Matsuoka T, Endo S, Nakamura A, Kawamoto H and Takai T: Ectopically expressed PIR-B on T cells constitutively binds to MHC class I and attenuates T helper type 1 responses. Int Immunol. 21:1151–1161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patocka J, Nepovimova E, Kuca K and Wu W: Cyclosporine A: Chemistry and Toxicity-A review. Curr Med Chem. 28:3925–3934. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qadir M, O'Loughlin KL, Fricke SM, Williamson NA, Greco WR, Minderman H and Baer MR: Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin Cancer Res. 11:2320–2326. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Jiang L, Li Y, Xie B, Xie J, Wang Z, Zhou X, Jiang H, Fang Y, Pan H and Han W: Cyclosporine A sensitizes lung cancer cells to crizotinib through inhibition of the Ca2+/calcineurin/Erk pathway. EBioMedicine. 42:326–339. 2019. View Article : Google Scholar : PubMed/NCBI | |
Si YQ, Bian XK, Lu N, Jia YF, Hou ZH and Zhang Y: Cyclosporine induces up-regulation of immunoglobulin-like transcripts 3 and 4 expression on and activity of NKL cells. Transplant Proc. 44:1407–1411. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malaguarnera L: Influence of resveratrol on the immune response. Nutrients. 11:9462019. View Article : Google Scholar : PubMed/NCBI | |
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A and Ahn KS: The role of resveratrol in cancer therapy. Int J Mol Sci. 18:25892017. View Article : Google Scholar : PubMed/NCBI | |
Ren B, Kwah MX, Liu C, Ma Z, Shanmugam MK, Ding L, Xiang X, Ho PC, Wang L, Ong PS and Goh BC: Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI | |
Svajger U, Obermajer N and Jeras M: Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology. 129:525–535. 2010. View Article : Google Scholar : PubMed/NCBI | |
Acebedo-Martínez FJ, Alarcón-Payer C, Frontera A, Barbas R, Prohens R, Di Crisci M, Domínguez-Martín A, Gómez-Morales J and Choquesillo-Lazarte D: Novel polymorphic cocrystals of the Non-steroidal anti-inflammatory drug niflumic acid: Expanding the pharmaceutical landscape. Pharmaceutics. 13:21402021. View Article : Google Scholar : PubMed/NCBI | |
Jin LH, Kim BH, Lee JH, Lee K, Kwack K and Yim SV: Screening study for genetic polymorphisms affecting pharmacokinetics of talniflumate. Transl Clin Pharmacol. 25:166–172. 2017. View Article : Google Scholar : PubMed/NCBI | |
Altay A, Caglar S and Caglar B: Silver(I) complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines. Arch Physiol Biochem. 128:69–79. 2022. View Article : Google Scholar : PubMed/NCBI | |
Caglar S, Altay A, Kuzucu M and Caglar B: In vitro anticancer activity of novel co(II) and Ni(II) complexes of Non-steroidal Anti-inflammatory drug niflumic acid against human breast adenocarcinoma MCF-7 cells. Cell Biochem Biophys. 79:729–746. 2021. View Article : Google Scholar : PubMed/NCBI | |
Svajger U, Vidmar A and Jeras M: Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4. Int Immunopharmacol. 8:997–1005. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sakata D, Yao C and Narumiya S: Prostaglandin E2, an immunoactivator. J Pharmacol Sci. 112:1–5. 2010. View Article : Google Scholar : PubMed/NCBI | |
Santiso A, Heinemann A and Kargl J: Prostaglandin E2 in the tumor microenvironment, a convoluted affair mediated by EP receptors 2 and 4. Pharmacol Rev. 76:388–413. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tomić S, Joksimović B, Bekić M, Vasiljević M, Milanović M, Čolić M and Vučević D: Prostaglanin-E2 potentiates the suppressive functions of human mononuclear Myeloid-derived suppressor cells and increases their capacity to expand IL-10-Producing regulatory T cell subsets. Front Immunol. 10:4752019. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Koebel CM and Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Saleiro D and Platanias LC: Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin Immunol. 43:1012992019. View Article : Google Scholar : PubMed/NCBI | |
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R and Schmitz M: Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance. Eur J Immunol. 52:1750–1758. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baskar R, Lee KA, Yeo R and Yeoh KW: Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
Alamilla-Presuel JC, Burgos-Molina AM, González-Vidal A, Sendra-Portero F and Ruiz-Gómez MJ: Factors and molecular mechanisms of radiation resistance in cancer cells. Int J Radiat Biol. 98:1301–1315. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Zhou H, Wu C and Peng Y: Molecular markers that predict response to combined radiotherapy and immunotherapy in patients with lung adenocarcinoma: A bioinformatics analysis. Transl Cancer Res. 12:2646–2659. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang M, Wu F, Lu J, Xiao C, Wu M, Yu J and Chen D: Overcoming Radio-immunotherapy treatment resistance through ILT4 blockade and reversal of HFRT induced CXCL1-CXCR2 axis activation and Tumor-associated macrophage immunosuppression. Int J Radiat Oncol Biol Phys. 117 (Suppl):S72–S73. 2023. View Article : Google Scholar | |
Chen X, Yuan M, Zhong T, Wang M, Wu F, Lu J, Sun D, Xiao C, Sun Y, Hu Y, et al: LILRB2 inhibition enhances radiation sensitivity in Non-small cell lung cancer by attenuating Radiation-induced senescence. Cancer Lett. 593:2169302024. View Article : Google Scholar : PubMed/NCBI | |
Umiker B, Hashambhoy-Ramsay Y, Smith J, Rahman T, Mueller A, Davidson R, Meyer C, Patankar G, Alam MM, Jaffe S, et al: Inhibition of LILRB2 by a novel blocking antibody designed to reprogram immunosuppressive macrophages to drive T-cell activation in tumors. Mol Cancer Ther. 22:471–484. 2023. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulos KP, Lakhani NJ, Yap TA, Naumovski Al, Brown KS, Umiker B, McGrath L, Zhang W, Stack E, Riley G, et al: Phase 1, first-in-human trial of JTX-8064, an anti-LILRB2/ILT4 monoclonal antibody, as monotherapy and in combination with anti-PD-1 in adult patients with advanced solid tumors (INNATE). J Clin Oncol. 39:TPS26722021. View Article : Google Scholar | |
Hashambhoy-Ramsay Y, Spaulding V, Priess M, O'Malley K, Gostissa M, Stack E, Smith J, Willer M, Umiker B and Shaffer D: 217 Evaluating biomarkers of JTX-8064 (anti-LILRB2/ILT4 monoclonal antibody) in an ex vivo human tumor histoculture system to inform clinical development. J Immunother Cancer. 82020. | |
Cohen H, Hashambhoy-Ramsay Y, Pepper LR, Smith JY, Willer M, Guay K, Spaulding V, O'Malley K, Gostissa M, Dhaneshwar A, et al: Preclinical evaluation of JTX-8064, an anti-LILRB2 antagonist antibody, for reprogramming tumor-associated macrophages. Cancer Res. 79:50072019. View Article : Google Scholar | |
Siu LL, Wang D, Hilton J, Geva R, Rasco D, Abraham AK, Markensohn JF, Suttner L, Siddiqi S, Altura AR and Maurice-Dror C: Initial results of a phase I study of MK-4830, a first-in-class anti-immunoglobulin-like transcript 4 (ILT4) myeloid-specific Antibody in patients (pts) with advanced solid tumours. Ann Oncol. 31:S462. 2020. View Article : Google Scholar | |
Siu LL, Wang D, Hilton J, Geva R, Rasco D, Perets R, Abraham AK, Wilson DC, Markensohn JF, Lunceford J, et al: Correction: First-in-class Anti-immunoglobulin-like Transcript 4 Myeloid-Specific Antibody MK-4830 Abrogates a PD-1 Resistance Mechanism in Patients with Advanced Solid Tumors. Clin Cancer Res. 28:17342022. View Article : Google Scholar : PubMed/NCBI | |
Cho BC, Hilton J, Rodriguez CP, Bonomi M, Siu LL, Gil-Martin M, Siddiqi S, Myer NM, Suttner L, Wilson D, et al: Abstract CT114: Phase 1 study of the anti-immunoglobulin-like transcript 4 (ILT4) monoclonal antibody MK-4830 plus pembrolizumab in patients with previously untreated advanced head and neck squamous cell carcinoma (HNSCC) or non-small cell lung cancer (NSCLC). Cancer Res. 84:CT1142024. View Article : Google Scholar |