1
|
De Lellis RA and Williams ED: Tumours of
the thyroid and parathyroid. Pathology and Genetics of Tumours of
Endocrine Organs. De Lellis RA, Lloyd RV, Heitz PU and Eng C: IARC
Press; Lyon: pp. 51–56. 2004
|
2
|
Dal Maso L, Bosetti C, La Vecchia C and
Franceschi S: Risk factors for thyroid cancer: an epidemiological
review focused on nutritional factors. Cancer Causes Control.
20:75–86. 2009.PubMed/NCBI
|
3
|
Landa I and Robledo M: Association studies
in thyroid cancer susceptibility: are we on the right track? J Mol
Endocrinol. 47:R43–R58. 2011. View Article : Google Scholar
|
4
|
Sarasin A, Bounacer A, Lepage F,
Schlumberger M and Suarez H: Mechanisms of mutagenesis in mammalian
cells. Application to human thyroid tumours. C R Acad Sci III.
322:143–149. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Adjadj E, Schlumberger M and de Vathaire
F: Germ-line DNA polymorphisms and susceptibility to differentiated
thyroid cancer. Lancet Oncol. 10:181–190. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gudmundsson J, Sulem P, Gudbjartsson DF,
et al: Common variants on 9q22.33 and 14q13.3 predispose to thyroid
cancer in European populations. Nat Genet. 41:460–464. 2009.
View Article : Google Scholar
|
7
|
Hoeijmakers JHJ: Genome maintenance
mechanisms for preventing cancer. Nature. 411:366–374. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sigurdson AJ, Hauptmann M, Alexander BH,
Doody MM, Thomas CB, Struewing JP and Jones IM: DNA damage among
thyroid cancer and multiple cancer cases, controls, and long-lived
individuals. Mutat Res. 586:173–188. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gatzidou E, Michailidi C,
Tseleni-Balafouta S and Theocharis S: An epitome of DNA repair
related genes and mechanisms in thyroid carcinoma. Cancer Lett.
290:139–147. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wilson DM III, Kim D, Berquist BR and
Sigurdson AJ: Variation in base excision repair capacity. Mutat
Res. 711:100–112. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hung RJ, Hall J, Brennan P and Boffetta P:
Genetic polymorphisms in the base excision repair pathway and
cancer risk: a HuGE review. Am J Epidemiol. 162:925–942. 2005.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Silva SN, Gil OM, Oliveira VC, et al:
Association of polymorphisms in ERCC2 gene with non-familial
thyroid cancer risk. Cancer Epidemiol Biomarkers Prev.
14:2407–2412. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gomes BC, Silva SN, Azevedo AP, et al: The
role of common variants of non-homologous end-joining repair genes
XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep.
24:1079–1085. 2010.PubMed/NCBI
|
14
|
Bastos HN, Antão MR, Silva SN, et al:
Association of polymorphisms in genes of the homologous
recombination DNA repair pathway and thyroid cancer risk. Thyroid.
19:1067–1075. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xu L, Doan PC, Wei Q, Liu Y, Li G and
Sturgis EM: Association of BRCA1 functional single nucleotide
polymorphisms with risk of differentiated thyroid carcinomaa.
Thyroid. 22:35–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Silva SN, Gomes BC, Rueff J and Gaspar JF:
DNA repair perspectives in thyroid and breast cancer: the role of
DNA repair polymorphisms. DNA Repair and Human Health. Vengrova S:
InTech; pp. 459–484. 2011
|
17
|
Hu JJ, Smith TR, Miller MS, Mohrenweiser
HW, Golden A and Case LD: Amino acid substitution variants of APE1
and XRCC1 genes associated with ionizing radiation sensitivity.
Carcinogenesis. 22:917–922. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vodicka P, Stetina R, Polakova V, et al:
Association of DNA repair polymorphisms with DNA repair functional
outcomes in healthy human subjects. Carcinogenesis. 28:657–664.
2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Silva SN, Moita R, Azevedo AP, et al:
Menopausal age and XRCC1 gene polymorphisms: role in breast cancer
risk. Cancer Detect Prev. 31:303–309. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lange K, Cantor R, Horvath S, Perola M,
Sabatti C, Sinsheimer J and Sobel E: Mendel version 4.0: a complete
package for the exact genetic analysis of discrete traits in
pedigree and population data sets. Am J Hum Genet.
69:A18862001.
|
21
|
Kiuru A, Lindholm C, Heinavaara S, et al:
XRCC1 and XRCC3 variants and risk of glioma and meningioma. J
Neurooncol. 88:135–142. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Newcomb PA, Egan KM, et al:
Genetic polymorphisms in base-excision repair pathway genes and
risk of breast cancer. Cancer Epidemiol Biomarkers Prev.
15:353–358. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Conde J, Silva S, Azevedo A, Teixeira V,
Pina J, Rueff J and Gaspar J: Association of common variants in
mismatch repair genes and breast cancer susceptibility: a multigene
study. BMC Cancer. 9:3442009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ginsberg G, Angle K, Guyton K and Sonawane
B: Polymorphism in the DNA repair enzyme XRCC1: utility of current
database and implications for human health risk assessment. Mutat
Res. 727:1–15. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chiang FY, Wu CW, Hsiao PJ, et al:
Association between polymorphisms in DNA base excision repair genes
XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma. Clin
Cancer Res. 14:5919–5924. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
García-Quispes WA, Pérez-Machado G, Akdi
A, et al: Association studies of OGG1, XRCC1, XRCC2 and XRCC3
polymorphisms with differentiated thyroid cancer. Mutat Res.
709–710:67–72. 2011.PubMed/NCBI
|
27
|
Ryu RA, Tae K, Min HJ, Jeong JH, Cho SH,
Lee SH and Ahn YH: XRCC1 polymorphisms and risk of papillary
thyroid carcinoma in a Korean sample. J Korean Med Sci. 26:991–995.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sigurdson AJ, Land CE, Bhatti P, et al:
Thyroid nodules, polymorphic variants in DNA repair and RET-related
genes, and interaction with ionizing radiation exposure from
nuclear tests in Kazakhstan. Radiat Res. 171:77–88. 2009.
View Article : Google Scholar
|
29
|
Ho T, Li G, Lu J, Zhao C, Wei Q and
Sturgis EM: Association of XRCC1 polymorphisms and risk of
differentiated thyroid carcinoma: a case-control analysis. Thyroid.
19:129–135. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Akulevich NM, Saenko VA, Rogounovitch TI,
et al: Polymorphisms of DNA damage response genes in
radiation-related and sporadic papillary thyroid carcinoma. Endocr
Relat Cancer. 16:491–503. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wei B, Zhou Y, Xu Z, et al: The effect of
hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a
meta-analysis. PLoS One. 6:e275452011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gu D, Wang M, Zhang Z and Chen J: Lack of
association between the hOGG1 Ser326Cys polymorphism and breast
cancer risk: evidence from 11 case-control studies. Breast Cancer
Res Treat. 122:527–531. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yuan W, Xu L, Feng Y, et al: The hOGG1
Ser326Cys polymorphism and breast cancer risk: a meta-analysis.
Breast Cancer Res Treat. 122:835–842. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
David SS, O'Shea VL and Kundu S:
Base-excision repair of oxidative DNA damage. Nature. 447:941–950.
2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cheadle JP and Sampson JR:
MUTYH-associated polyposis - from defect in base excision repair to
clinical genetic testing. DNA Repair. 6:274–279. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Aretz S, Uhlhaas S, Goergens H, et al:
MUTYH-associated polyposis: 70 of 71 patients with biallelic
mutations present with an attenuated or atypical phenotype. Int J
Cancer. 119:807–814. 2006. View Article : Google Scholar
|
37
|
Pervaiz M, Eppolito A and Schmidt K:
Papillary thyroid cancer in a patient with MUTYH-associated
polyposis (MAP). Fam Cancer. 9:595–597. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ali M, Kim H, Cleary S, Cupples C,
Gallinger S and Bristow R: Characterization of mutant MUTYH
proteins associated with familial colorectal cancer.
Gastroenterology. 135:499–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Picelli S, Zajac P, Zhou XL, et al: Common
variants in human CRC genes as low-risk alleles. Eur J Cancer.
46:1041–1048. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tao H, Shinmura K, Suzuki M, et al:
Association between genetic polymorphisms of the base excision
repair gene MUTYH and increased colorectal cancer risk in a
Japanese population. Cancer Sci. 99:355–360. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Miyaishi A, Osawa K, Osawa Y, et al: MUTYH
Gln324His gene polymorphism and genetic susceptibility for lung
cancer in a Japanese population. J Exp Clin Cancer Res. 28:102009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Qian B, Zhang H, Zhang L, Zhou X, Yu H and
Chen K: Association of genetic polymorphisms in DNA repair pathway
genes with non-small cell lung cancer risk. Lung Cancer.
73:138–146. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Huang M, Dinney CP, Lin X, Lin J, Grossman
HB and Wu X: High-order interactions among genetic variants in DNA
base excision repair pathway genes and smoking in bladder cancer
susceptibility. Cancer Epidemiol Biomarkers Prev. 16:84–91. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Jiang J, Zhang X, Yang H and Wang W:
Polymorphisms of DNA repair genes: ADPRT, XRCC1, and XPD and cancer
risk in genetic epidemiology. Methods Mol Biol. 471:305–333. 2009.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Miao X, Zhang X, Zhang L, et al: Adenosine
diphosphate ribosyl transferase and X-ray repair
cross-complementing 1 polymorphisms in gastric cardia cancer.
Gastroenterology. 131:420–427. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhai X, Liu J, Hu Z, et al: Polymorphisms
of ADPRT Val762Ala and XRCC1 Arg399Glu and risk of breast cancer in
Chinese women: a case control analysis. Oncol Rep. 15:247–252.
2006.PubMed/NCBI
|