1
|
Allen TM: Ligand-targeted therapeutics in
anticancer therapy. Nat Rev Cancer. 2:750–763. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maison W and Frangioni JV: Improved
chemical strategies for the targeted therapy of cancer. Angew Chem
Int Ed Engl. 42:4726–4728. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Markwalder R and Reubi JC:
Gastrin-releasing peptide receptors in the human prostate: relation
to neoplastic transformation. Cancer Res. 59:1152–1159.
1999.PubMed/NCBI
|
4
|
Sun B, Halmos G, Schally AV, Wang X and
Martinez M: Presence of receptors for bombesin/gastrin-releasing
peptide and mRNA for three receptor subtypes in human prostate
cancers. Prostate. 42:295–303. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gugger M and Reubi JC: Gastrin-releasing
peptide receptors in non-neoplastic and neoplastic human breast. Am
J Pathol. 155:2067–2076. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Halmos G, Wittliff JL and Schally AV:
Characterization of bombesin/gastrin-releasing peptide receptors in
human breast cancer and their relationship to steroid receptor
expression. Cancer Res. 55:280–287. 1995.PubMed/NCBI
|
7
|
Toi-Scott M, Jones CL and Kane MA:
Clinical correlates of bombesin-like peptide receptor subtype
expression in human lung cancer cells. Lung Cancer. 15:341–354.
1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Minamino N, Kangawa K and Matsuo H:
Neuromedin B: a novel bombesin-like peptide identified in porcine
spinal cord. Biochem Biophys Res Commun. 114:541–548. 1983.
View Article : Google Scholar : PubMed/NCBI
|
9
|
McDonald TJ, Jornvall H, Tatemoto K and
Mutt V: Identification and characterization of variant forms of the
gastrin-releasing peptide (GRP). FEBS Lett. 156:349–356. 1983.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Brannon-Peppas L and Blanchette JO:
Nanoparticle and targeted systems for cancer therapy. Adv Drug
Deliv Rev. 56:1649–1659. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Allen TM and Cullis PR: Drug delivery
systems: entering the mainstream. Science. 303:1818–1822. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Torchilin VP: Recent advances with
liposomes as pharmaceutical carriers. Nat Rev Drug Discov.
4:145–160. 2005. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Newman MS, Colbern GT, Working PK, Engbers
C and Amantea MA: Comparative pharmacokinetics, tissue
distribution, and therapeutic effectiveness of cisplatin
encapsulated in long-circulating, pegylated liposomes (SPI-077) in
tumor-bearing mice. Cancer Chemother Pharmacol. 43:1–7. 1999.
View Article : Google Scholar
|
14
|
Vaage J, Donovan D, Wipff E, et al:
Therapy of a xenografted human colonic carcinoma using cisplatin or
doxorubicin encapsulated in long-circulating pegylated stealth
liposomes. Int J Cancer. 80:134–137. 1999. View Article : Google Scholar
|
15
|
Chang YJ, Chang CH, Yu CY, et al:
Therapeutic efficacy and microSPECT/CT imaging of
188Re-DXR-liposome in a C26 murine colon carcinoma solid
tumor model. Nucl Med Biol. 37:95–104. 2010.PubMed/NCBI
|
16
|
Chen MH, Chang CH, Chang YJ, et al:
MicroSPECT/CT imaging and pharmacokinetics of
188Re-(DXR)-liposome in human colorectal
adenocarcinoma-bearing mice. Anticancer Res. 30:65–72.
2010.PubMed/NCBI
|
17
|
Emfietzoglou D, Kostarelos K and Sgouros
G: An analytic dosimetry study for the use of radionuclide-liposome
conjugates in internal radiotherapy. J Nucl Med. 42:499–504.
2001.PubMed/NCBI
|
18
|
Ting G, Chang CH and Wang HE: Cancer
nanotargeted radiopharmaceuticals for tumor imaging and therapy.
Anticancer Res. 29:4107–4118. 2009.PubMed/NCBI
|
19
|
Ercan MT and Caglar M: Therapeutic
radiopharmaceuticals. Curr Pharm Des. 6:1085–1121. 2000.PubMed/NCBI
|
20
|
Chang YJ, Chang CH, Chang TJ, et al:
Biodistribution, pharmacokinetics and microSPECT/CT imaging of
188Re-BMEDA-liposome in a C26 murine colon carcinoma
solid tumor animal model. Anticancer Res. 27:2217–2225.
2007.PubMed/NCBI
|
21
|
Carlsson G, Gullberg B and Hafstrom L:
Estimation of liver tumor volume using different formulas - an
experimental study in rats. J Cancer Res Clin Oncol. 105:20–23.
1983.PubMed/NCBI
|
22
|
Fang F, Wang AP and Yang SF: Antitumor
activity of a novel recombinant mutant human tumor necrosis
factor-related apoptosis-inducing ligand. Acta Pharmacol Sin.
26:1373–1381. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Morgillo F, Kim WY, Kim ES, Ciardiello F,
Hong WK and Lee HY: Implication of the insulin-like growth
factor-IR pathway in the resistance of non-small cell lung cancer
cells to treatment with gefitinib. Clin Cancer Res. 13:2795–2803.
2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Maddalena ME, Fox J, Chen J, et al:
177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and
autoradiography in prostate cancer models with low GRP-R
expression. J Nucl Med. 50:2017–2024. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tan Y, Sun X, Xu M, et al: Efficacy of
recombinant methioninase in combination with cisplatin on human
colon tumors in nude mice. Clin Cancer Res. 5:2157–2163.
1999.PubMed/NCBI
|
26
|
Chen LC, Chang CH, Yu CY, et al:
Biodistribution, pharmacokinetics and imaging of
188Re-BMEDA-labeled pegylated liposomes after
intraperitoneal injection in a C26 colon carcinoma ascites mouse
model. Nucl Med Biol. 34:415–423. 2007.PubMed/NCBI
|
27
|
Iznaga-Escobar N: 188Re-direct
labeling of monoclonal antibodies for radioimmunotherapy of solid
tumors: biodistribution, normal organ dosimetry, and toxicology.
Nucl Med Biol. 25:441–447. 1998. View Article : Google Scholar
|
28
|
O'Donoghue JA, Bardies M and Wheldon TE:
Relationships between tumor size and curability for uniformly
targeted therapy with beta-emitting radionuclides. J Nucl Med.
36:1902–1909. 1995.PubMed/NCBI
|
29
|
Li G, Wang Y, Huang K, Zhang H, Peng W and
Zhang C: The experimental study on the radioimmunotherapy of the
nasopharyngeal carcinoma overexpressing HER2/neu in nude mice model
with intratumoral injection of 188Re-herceptin. Nucl Med
Biol. 32:59–65. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang SK, Mayhew E, Gilani S, Lasic DD,
Martin FJ and Papahadjopoulos D: Pharmacokinetics and therapeutics
of sterically stabilized liposomes in mice bearing C-26 colon
carcinoma. Cancer Res. 52:6774–6781. 1992.PubMed/NCBI
|
31
|
Papahadjopoulos D, Allen TM, Gabizon A, et
al: Sterically stabilized liposomes: improvements in
pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad
Sci USA. 88:11460–11464. 1991. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao H, Wang JC, Sun QS, Luo CL and Zhang
Q: RGD-based strategies for improving antitumor activity of
paclitaxel-loaded liposomes in nude mice xenografted with human
ovarian cancer. J Drug Target. 17:10–18. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xiong XB, Huang Y, Lu WL, et al: Enhanced
intracellular delivery and improved antitumor efficacy of
doxorubicin by sterically stabilized liposomes modified with a
synthetic RGD mimetic. J Control Release. 107:262–275. 2005.
View Article : Google Scholar
|
34
|
Xiong XB, Huang Y, Lu WL, et al:
Intracellular delivery of doxorubicin with RGD-modified sterically
stabilized liposomes for an improved antitumor efficacy: in vitro
and in vivo. J Pharm Sci. 94:1782–1793. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Meng S, Su B, Li W, et al:
Integrin-targeted paclitaxel nanoliposomes for tumor therapy. Med
Oncol. 28:1180–1187. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wartchow CA, Alters SE, Garzone PD, et al:
Enhancement of the efficacy of an antagonist of an extracellular
receptor by attachment to the surface of a biocompatible carrier.
Pharm Res. 21:1880–1885. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li L, Wartchow CA, Danthi SN, et al: A
novel antiangiogenesis therapy using an integrin antagonist or
anti-Flk-1 antibody coated 90Y-labeled nanoparticles.
Int J Radiat Oncol Biol Phys. 58:1215–1227. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Du H, Cui C, Wang L, Liu H and Cui G:
Novel tetrapeptide, RGDF, mediated tumor specific liposomal
doxorubicin (DOX) preparations. Mol Pharm. 8:1224–1232
|
39
|
Turk MJ, Waters DJ and Low PS:
Folate-conjugated liposomes preferentially target macrophages
associated with ovarian carcinoma. Cancer Lett. 213:165–172. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Milas L, Stephens LC and Meyn RE: Relation
of apoptosis to cancer therapy. In Vivo. 8:665–673. 1994.PubMed/NCBI
|
41
|
Meyn RE, Stephens LC, Hunter NR and Milas
L: Apoptosis in murine tumors treated with chemotherapy agents.
Anticancer Drugs. 6:443–450. 1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cunningham D: Current status of colorectal
cancer: CPT-11 (irinotecan), a therapeutic innovation. Eur J
Cancer. 32A(Suppl 3): S1–S8. 1996. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chung KY and Saltz LB: Adjuvant therapy of
colon cancer: current status and future directions. Cancer J.
13:192–197. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen LC, Chang CH, Yu CY, et al:
Pharmacokinetics, micro-SPECT/CT imaging and therapeutic efficacy
of 188Re-DXR-liposome in C26 colon carcinoma ascites
mice model. Nucl Med Biol. 35:883–893. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tsai CC, Chang CH, Chen LC, et al:
Biodistribution and pharmacokinetics of 188Re-liposomes
and their comparative therapeutic efficacy with 5-fluorouracil in
C26 colonic peritoneal carcinomatosis mice. Int J Nanomed.
6:2607–2619. 2011.
|