1
|
Shi Y, Lan F, Matson C, Mulligan P,
Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation
mediated by the nuclear amine oxidase homolog LSD1. Cell.
119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Metzger E, Wissmann M, Yin N, Müller JM,
Schneider R, Peters AH, Günther T, Buettner R and Schüle R: LSD1
demethylates repressive histone marks to promote
androgen-receptor-dependent transcription. Nature. 437:436–439.
2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cai C, He HH, Chen S, Coleman I, Wang H,
Fang Z, Chen S, Nelson PS, Liu XS, Brown M and Balk SP: Androgen
receptor gene expression in prostate cancer is directly suppressed
by the androgen receptor through recruitment of lysine-specific
demethylase 1. Cancer Cell. 20:457–471. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sehrawat A, Gao L, Wang Y, Bankhead A III,
McWeeney SK, King CJ, Schwartzman J, Urrutia J, Bisson WH, Coleman
DJ, et al: LSD1 activates a lethal prostate cancer gene network
independently of its demethylase function. Proc Natl Acad Sci USA.
115:E4179–E4188. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shao G, Wan X, Lai W, Wu C, Jin J, Liu X,
Wei Y, Lin Q, Zhang L and Shao Q: Inhibition of lysine-specific
demethylase 1 prevents proliferation and mediates cisplatin
sensitivity in ovarian cancer cells. Oncol Lett. 15:9025–9032.
2018.PubMed/NCBI
|
6
|
Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu
W, Liang J, Sun L, Yang X, Shi L, et al: LSD1 is a subunit of the
NuRD complex and targets the metastasis programs in breast cancer.
Cell. 138:660–672. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hoshino I, Takahashi M, Akutsu Y, Murakami
K, Matsumoto Y, Suito H, Sekino N, Komatsu A, Iida K, Suzuki T, et
al: Genome-wide ChIP-seq data with a transcriptome analysis reveals
the groups of genes regulated by histone demethylase LSD1
inhibition in esophageal squamous cell carcinoma cells. Oncol Lett.
18:872–881. 2019.PubMed/NCBI
|
8
|
Ding J, Zhang ZM, Xia Y, Liao GQ, Pan Y,
Liu S, Zhang Y and Yan ZS: LSD1-mediated epigenetic modification
contributes to proliferation and metastasis of colon cancer. Br J
Cancer. 109:994–1003. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schenk T, Chen WC, Gollner S, Göllner S,
Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, et
al: Inhibition of the LSD1 (KDM1A) demethylase reactivates the
all-trans-retinoic acid differentiation pathway in acute myeloid
leukemia. Nat Med. 18:605–611. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mohammad HP, Smitheman KN, Kamat CD, Soong
D, Federowicz KE, Van Aller GS, Schneck JL, Carson JD, Liu Y,
Butticello M, et al: A DNA hypomethylation signature predicts
antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell.
28:57–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Harris WJ, Huang X, Lynch JT, Spencer GJ,
Hitchin JR, Li Y, Ciceri F, Blaser JG, Greystoke BF, Jordan AM, et
al: The histone demethylase KDM1A sustains the oncogenic potential
of MLL-AF9 leukemia stem cells. Cancer Cell. 21:473–487. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lim S, Janzer A, Becker A, Zimmer A,
Schüle R, Buettner R and Kirfel J: Lysine-specific demethylase 1
(LSD1) is highly expressed in ER-negative breast cancers and a
biomarker predicting aggressive biology. Carcinogenesis.
31:512–520. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shi YJ, Matson C, Lan F, Iwase S, Baba T
and Shi Y: Regulation of LSD1 histone demethylase activity by its
associated factors. Mol Cell. 19:857–864. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee MG, Wynder C, Cooch N and Shiekhattar
R: An essential role for CoREST in nucleosomal histone 3 lysine 4
demethylation. Nature. 437:432–435. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ketscher A, Jilg CA, Willmann D, Hummel B,
Imhof A, Rüsseler V, Hölz S, Metzger E, Müller JM and Schüle R:
LSD1 controls metastasis of androgen-independent prostate cancer
cells through PXN and LPAR6. Oncogenesis. 3:e1202014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liscovitch M and Cantley LC: Lipid second
messengers. Cell. 77:329–334. 1994. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rabinowitz JD and White E: Autophagy and
metabolism. Science. 330:1344–1348. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Huang C and Freter C: Lipid metabolism,
apoptosis and cancer therapy. Int J Mol Sci. 16:924–949. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hannun YA and Bell RM: Lysosphingolipids
inhibit protein kinase C: Implications for the sphingolipidoses.
Science. 235:670–674. 1987. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dressler KA, Mathias S and Kolesnick RN:
Tumor necrosis factor-alpha activates the sphingomyelin signal
transduction pathway in a cell-free system. Science. 255:1715–1718.
1992. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hannun YA and Obeid LM: Principles of
bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol
Cell Biol. 9:139–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ogretmen B and Hannun YA: Biologically
active sphingolipids in cancer pathogenesis and treatment. Nat Rev
Cancer. 4:604–616. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cuvillier O, Pirianov G, Kleuser B, Vanek
PG, Coso OA, Gutkind S and Spiegel S: Suppression of
ceramide-mediated programmed cell death by sphingosine-1-phosphate.
Nature. 381:800–803. 1996. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee MJ, Van Brocklyn JR, Thangada S, Liu
CH, Hand AR, Menzeleev R, Spiegel S and Hla T:
Sphingosine-1-phosphate as a ligand for the G protein-coupled
receptor EDG-1. Science. 279:1552–1555. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sakamoto A, Hino S, Nagaoka K, Anan K,
Takase R, Matsumori H, Ojima H, Kanai Y, Arita K and Nakao M:
Lysine demethylase LSD1 coordinates glycolytic and mitochondrial
metabolism in hepatocellular carcinoma cells. Cancer Res.
75:1445–1456. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kosumi K, Baba Y, Sakamoto A, Ishimoto T,
Harada K, Nakamura K, Kurashige J, Hiyoshi Y, Iwatsuki M, Iwagami
S, et al: Lysine-specific demethylase-1 contributes to malignant
behavior by regulation of invasive activity and metabolic shift in
esophageal cancer. Int J Cancer. 138:428–439. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wenk MR: Lipidomics: New tools and
applications. Cell. 143:888–895. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou Y, Li Y, Wang WJ, Xiang P, Luo XM,
Yang L, Yang SY and Zhao YL: Synthesis and biological evaluation of
novel (E)-N′-(2,3-dihydro-1H-inden-1-ylidene) benzohydrazides as
potent LSD1 inhibitors. Bioorg Med Chem Lett. 26:4552–4557. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Folch J, Lees M and Sloane Stanley GH: A
simple method for the isolation and purification of total lipides
from animal tissues. J Biol Chem. 226:497–509. 1957. View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Goldman MJ, Craft B, Hastie M, Repečka K,
McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al:
Visualizing and interpreting cancer genomics data via the Xena
platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li Y, Tao L, Zuo Z, Zhou Y, Qian X, Lin Y,
Jie H, Liu C, Li Z, Zhang H, et al: ZY0511, a novel, potent and
selective LSD1 inhibitor, exhibits anticancer activity against
solid tumors via the DDIT4/mTOR pathway. Cancer Lett. 454:179–190.
2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Birge RB, Boeltz S, Kumar S, Carlson J,
Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X,
Hutchins JT, et al: Phosphatidylserine is a global
immunosuppressive signal in efferocytosis, infectious disease, and
cancer. Cell Death Differ. 23:962–978. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Iorio E, Ricci A, Bagnoli M, Pisanu ME,
Castellano G, Di Vito M, Venturini E, Glunde K, Bhujwalla ZM,
Mezzanzanica D, et al: Activation of phosphatidylcholine cycle
enzymes in human epithelial ovarian cancer cells. Cancer Res.
70:2126–2135. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dolce V, Cappello AR, Lappano R and
Maggiolini M: Glycerophospholipid synthesis as a novel drug target
against cancer. Curr Mol Pharmacol. 4:167–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Obeid LM, Linardic CM, Karolak LA and
Hannun YA: Programmed cell death induced by ceramide. Science.
259:1769–1771. 1993. View Article : Google Scholar : PubMed/NCBI
|
37
|
Siskind LJ, Feinstein L, Yu T, Davis JS,
Jones D, Choi J, Zuckerman JE, Tan W, Hill RB, Hardwick JM and
Colombini M: Anti-apoptotic Bcl-2 family proteins disassemble
ceramide channels. J Biol Chem. 283:6622–6630. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Oskouian B, Sooriyakumaran P, Borowsky AD,
Crans A, Dillard-Telm L, Tam YY, Bandhuvula P and Saba JD:
Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and
p38-dependent pathways and is down-regulated in colon cancer. Proc
Natl Acad Sci USA. 103:17384–17389. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Gao XY, Li L, Wang XH, Wen XZ, Ji K, Ye L,
Cai J, Jiang WG and Ji JF: Inhibition of sphingosine-1-phosphate
phosphatase 1 promotes cancer cells migration in gastric cancer:
Clinical implications. Oncol Rep. 34:1977–1987. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Escriba PV, González-Ros JM, Goñi FM,
Kinnunen PK, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X,
Horváth I and Barceló-Coblijn G: Membranes: A meeting point for
lipids, proteins and therapies. J Cell Mol Med. 12:829–875. 2008.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Prentki M and Madiraju SR: Glycerolipid
metabolism and signaling in health and disease. Endocr Rev.
29:647–676. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chang KT, Anishkin A, Patwardhan GA,
Beverly LJ, Siskind LJ and Colombini M: Ceramide channels:
destabilization by Bcl-xL and role in apoptosis. Biochim Biophys
Acta. 1848:2374–2384. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kolesnick R and Fuks Z: Radiation and
ceramide-induced apoptosis. Oncogene. 22:5897–5906. 2003.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Haydn T, Metzger E, Schuele R and Fulda S:
Concomitant epigenetic targeting of LSD1 and HDAC synergistically
induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell
Death Dis. 8:e28792017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Liu S, Lu W, Li S, Li S, Liu J, Xing Y,
Zhang S, Zhou JZ, Xing H, Xu Y, et al: Identification of JL1037 as
a novel, specific, reversible lysine-specific demethylase 1
inhibitor that induce apoptosis and autophagy of AML cells.
Oncotarget. 8:31901–31914. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Gutierrez G, Mendoza C, Montano LF and
Lopez-Marure R: Ceramide induces early and late apoptosis in human
papilloma virus+ cervical cancer cells by inhibiting reactive
oxygen species decay, diminishing the intracellular concentration
of glutathione and increasing nuclear factor-kappaB translocation.
Anticancer Drugs. 18:149–159. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu YY, Yu JY, Yin D, Patwardhan GA, Gupta
V, Hirabayashi Y, Holleran WM, Giuliano AE, Jazwinski SM,
Gouaze-Andersson V, et al: A role for ceramide in driving cancer
cell resistance to doxorubicin. FASEB J. 22:2541–2551. 2008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Coe GL, Redd PS, Paschall AV, Lu C, Gu L,
Cai H, Albers T, Lebedyeva IO and Liu K: Ceramide mediates
FasL-induced caspase 8 activation in colon carcinoma cells to
enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T
lymphocytes. Sci Rep. 6:308162016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hu Y, Le Leu RK, Belobrajdic D and Young
GP: The potential of sphingomyelin as a chemopreventive agent in
AOM-induced colon cancer model: Wild-type and p53+/− mice. Mol Nutr
Food Res. 52:558–566. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Klutzny S, Lesche R, Keck M, Kaulfuss S,
Schlicker A, Christian S, Sperl C, Neuhaus R, Mowat J, Steckel M,
et al: Functional inhibition of acid sphingomyelinase by
Fluphenazine triggers hypoxia-specific tumor cell death. Cell Death
Dis. 8:e27092017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Mizutani N, Omori Y, Kawamoto Y, Sobue S,
Ichihara M, Suzuki M, Kyogashima M, Nakamura M, Tamiya-Koizumi K,
Nozawa Y and Murate T: Resveratrol-induced transcriptional
up-regulation of ASMase (SMPD1) of human leukemia and cancer cells.
Biochem Biophys Res Commun. 470:851–856. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kachler K, Bailer M, Heim L, Schumacher F,
Reichel M, Holzinger CD, Trump S, Mittler S, Monti J, Trufa DI, et
al: Enhanced acid sphingomyelinase activity drives immune evasion
and tumor growth in non-small cell lung carcinoma. Cancer Res.
77:5963–5976. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Shamseddine AA, Clarke CJ, Carroll B,
Airola MV, Mohammed S, Rella A, Obeid LM and Hannun YA:
P53-dependent upregulation of neutral sphingomyelinase-2: Role in
doxorubicin-induced growth arrest. Cell Death Dis. 6:e19472015.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Chen Y, Zhang P, Xu SC, Yang L, Voss U,
Ekblad E, Wu Y, Min Y, Hertervig E, Nilsson Å and Duan RD: Enhanced
colonic tumorigenesis in alkaline sphingomyelinase (NPP7) knockout
mice. Mol Cancer Ther. 14:259–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Carrer A and Wellen KE: Metabolism and
epigenetics: A link cancer cells exploit. Curr Opin Biotechnol.
34:23–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Seok S, Kim YC, Byun S, Choi S, Xiao Z,
Iwamori N, Zhang Y, Wang C, Ma J, Ge K, et al: Fasting-induced
JMJD3 histone demethylase epigenetically activates mitochondrial
fatty acid β-oxidation. J Clin Invest. 128:3144–3159. 2018.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Cheng Y, Yuan Q, Vergnes L, Rong X, Youn
JY, Li J, Yu Y, Liu W, Cai H, Lin JD, et al: KDM4B protects against
obesity and metabolic dysfunction. Proc Natl Acad Sci USA.
115:E5566–E5575. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Nagaoka K, Hino S, Sakamoto A, Anan K,
Takase R, Umehara T, Yokoyama S, Sasaki Y and Nakao M:
Lysine-specific demethylase 2 suppresses lipid influx and
metabolism in hepatic cells. Mol Cell Biol. 35:1068–1080. 2015.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Duteil D, Tosic M, Lausecker F, Nenseth
HZ, Müller JM, Urban S, Willmann D, Petroll K, Messaddeq N,
Arrigoni L, et al: Lsd1 ablation triggers metabolic reprogramming
of brown adipose tissue. Cell Rep. 17:1008–1021. 2016. View Article : Google Scholar : PubMed/NCBI
|