Applications and perspectives of tumor organoids in radiobiology (Review)
- Authors:
- Jin Yu
- Kailun Wang
- Yongjiang Tang
- Dalin Zheng
-
Affiliations: Department of Hematology, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China, Emergency Department, Panshihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China, Department of Vascular Surgery, Panzhihua Central Hospital, Panzhihua, Sichuan 617067, P.R. China - Published online on: June 21, 2024 https://doi.org/10.3892/or.2024.8759
- Article Number: 100
-
Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kreier F: Cancer will cost the world $25 trillion over next 30 years. Nature. Mar 7–2023.(Epub ahead of print). doi: 10.1038/d41586-023-00634-9. View Article : Google Scholar | |
Hanahan D: Rethinking the war on cancer. Lancet. 383:558–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee JH and Wee CW: Treatment of Adult Gliomas: A current update. Brain Neurorehabil. 15:e242022. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et al: Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 173:515–528.e17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boustani J, Grapin M, Laurent PA, Apetoh L and Mirjolet C: The 6th R of radiobiology: Reactivation of anti-tumor immune response. Cancers (Basel). 11:8602019. View Article : Google Scholar : PubMed/NCBI | |
Barazzuol L, Coppes RP and van Luijk P: Prevention and treatment of radiotherapy-induced side effects. Mol Oncol. 14:1538–1554. 2020. View Article : Google Scholar : PubMed/NCBI | |
Strong MJ, Baddoo M, Nanbo A, Xu M, Puetter A and Lin Z: Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes. J Virol. 88:10696–10704. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nagle PW and Coppes RP: Current and future perspectives of the use of organoids in radiobiology. Cells. 9:26492020. View Article : Google Scholar : PubMed/NCBI | |
Stewart-Ornstein J, Iwamoto Y, Miller MA, Prytyskach MA, Ferretti S, Holzer P, Kallen J, Furet P, Jambhekar A, Forrester WC, et al: p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat Commun. 12:8982021. View Article : Google Scholar : PubMed/NCBI | |
Hammond EM and Muschel RJ: Radiation and ATM inhibition: The heart of the matter. J Clin Invest. 124:3289–3291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu SJ, Malatesta M, Lien BV, Saha P, Thombare SS, Hong SJ, Pedraza L, Koontz M, Seo K, Horlbeck MA, et al: CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 21:832020. View Article : Google Scholar : PubMed/NCBI | |
Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, et al: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 18:827–838. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, et al: Organoid models of human and mouse ductal pancreatic cancer. Cell. 160:324–338. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, Li Z, Liu S, Feng H, Huang W, et al: A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci. 24:1377–1391. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, et al: Organoid cultures derived from patients with advanced prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI | |
de Boo J and Hendriksen C: Reduction strategies in animal research: A review of scientific approaches at the intra-experimental, supra-experimental and extra-experimental levels. Altern Lab Anim. 33:369–377. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lancaster MA and Knoblich JA: Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345:12471252014. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: Modeling development and disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar : PubMed/NCBI | |
Method of the Year 2017, . Organoids. Nat Methods. Jan 3–2018.(Epub ahead of print). | |
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al: A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 180:188–204.e22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al: A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grassi L, Alfonsi R, Francescangeli F, Signore M, De Angelis ML, Addario A, Costantini M, Flex E, Ciolfi A, Pizzi S, et al: Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 10:2012019. View Article : Google Scholar : PubMed/NCBI | |
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, et al: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, et al: Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 184:3299–3317.e22. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sheridan MA, Zhao X, Fernando RC, Gardner L, Perez-Garcia V, Li Q, Marsh SGE, Hamilton R, Moffett A and Turco MY: Characterization of primary models of human trophoblast. Development. 148:dev1997492021. View Article : Google Scholar : PubMed/NCBI | |
Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, Wen WX, Sousos N, Murphy LC, Grygielska B, et al: Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 13:364–385. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M, Brown NE, Staab JF, Latanich R, Zachos NC, et al: In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol. 41:824–831. 2023. View Article : Google Scholar : PubMed/NCBI | |
Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 23:1424–1435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD and Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, Margolskee RF and Jiang P: Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci USA. 111:16401–16406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, et al: The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 6:89892015. View Article : Google Scholar : PubMed/NCBI | |
Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, et al: Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 19:568–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Francies HE, Secrier M, Perner J, Miremadi A, Galeano-Dalmau N, Barendt WJ, Letchford L, Leyden GM, Goffin EK, et al: Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun. 9:29832018. View Article : Google Scholar : PubMed/NCBI | |
Blau HM and Daley GQ: Stem Cells in the Treatment of Disease. N Engl J Med. 380:1748–1760. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, et al: Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res. 27:4397–4409. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, Arai E, Sugiyama Y, Matsuzaki J, Uchida R, et al: Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep. 27:1265–1276.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang XW, Xia TL, Tang HC, Liu X, Han R, Zou X, Zhao YT, Chen MY and Li G: Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma. Ann Transl Med. 10:5262022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xu H, Zhang L, Song L, Feng D, Peng X, Wu M, Zou Y, Wang B, Zhan L, et al: Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol. 145:2637–2647. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuki K, Cheng N, Nakano M and Kuo CJ: Organoid models of tumor immunology. Trends Immunol. 41:652–664. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lo YH, Karlsson K and Kuo CJ: Applications of organoids for cancer biology and precision medicine. Nat Cancer. 1:761–773. 2020. View Article : Google Scholar : PubMed/NCBI | |
Joo H, Min S and Cho SW: Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng. 15:204173142412325022024. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Li X and Yu S: Cancer organoid co-culture model system: Novel approach to guide precision medicine. Front Immunol. 13:10613882023. View Article : Google Scholar : PubMed/NCBI | |
Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA and Lelkes PI: Bioreactor technologies for enhanced organoid culture. Int J Mol Sci. 24:114272023. View Article : Google Scholar : PubMed/NCBI | |
Park SE, Georgescu A and Huh D: Organoids-on-a-chip. Science. 364:960–965. 2019. View Article : Google Scholar : PubMed/NCBI | |
Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP, et al: Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA. 112:13308–13311. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Rourke KP, Loizou E, Livshits G, Schatoff EM, Baslan T, Manchado E, Simon J, Romesser PB, Leach B, Han T, et al: Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol. 35:577–582. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martin ML, Adileh M, Hsu KS, Hua G, Lee SG, Li C, Fuller JD, Rotolo JA, Bodo S, Klingler S, et al: Organoids reveal that inherent radiosensitivity of small and large intestinal stem cells determines organ in review sensitivity. Cancer Res. 80:1219–1227. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sato T and Clevers H: Growing self-organizing mini-guts from a single intestinal stem cell: Mechanism and applications. Science. 340:1190–1194. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fujimichi Y, Otsuka K, Tomita M and Iwasaki T: An efficient intestinal organoid system of direct sorting to evaluate stem cell competition in vitro. Sci Rep. 9:202972019. View Article : Google Scholar : PubMed/NCBI | |
Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, et al: Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 528:560–564. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qu M, Xiong L, Lyu Y, Zhang X, Shen J, Guan J, Chai P, Lin Z, Nie B, Li C, et al: Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Res. 31:259–271. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y and Wrana JL: Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature. 526:715–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Farin HF, Van Es JH and Clevers H: Redundant sources of wnt regulate intestinal stem cells and promote formation of paneth cells. Gastroenterology. 143:1518–1529.e7. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bhanja P, Saha S, Kabarriti R, Liu L, Roy-Chowdhury N, Roy-Chowdhury J, Sellers RS, Alfieri AA and Guha C: Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One. 4:e80142009. View Article : Google Scholar : PubMed/NCBI | |
Otsuka K, Hamada N, Magae J, Matsumoto H, Hoshi Y and Iwasaki T: Ionizing radiation leads to the replacement and de novo production of colonic Lgr5(+) stem cells. Radiat Res. 179:637–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-Derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Al Bitar S, Ballout F, Monzer A, Kanso M, Saheb N, Mukherji D, Faraj W, Tawil A, Doughan S, Hussein M, et al: Thymoquinone radiosensitizes human colorectal cancer cells in 2D and 3D culture models. Cancers (Basel). 14:13632022. View Article : Google Scholar : PubMed/NCBI | |
Otsuka K, Suzuki K, Fujimichi Y, Tomita M and Iwasaki T: Cellular responses and gene expression profiles of colonic Lgr5+ stem cells after low-dose/low-dose-rate radiation exposure. J Radiat Res. 59 (Suppl 2):ii18–ii22. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schwartz DM, Pehlivaner Kara MO, Goldstein AM, Ott HC and Ekenseair AK: Spray delivery of intestinal organoids to reconstitute epithelium on decellularized native extracellular matrix. Tissue Eng Part C Methods. 23:565–573. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jee J, Park JH, Im JH, Kim MS, Park E, Lim T, Choi WH, Kim JH, Kim WR, Ko JS, et al: Functional recovery by colon organoid transplantation in a mouse model of radiation proctitis. Biomaterials. 275:1209252021. View Article : Google Scholar : PubMed/NCBI | |
Lucky SS, Law M, Lui MH, Mong J, Shi J, Yu S, Yoon DK, Djeng SK, Wang J, Lim CM and Tan MH: Patient-derived nasopharyngeal cancer organoids for disease modeling and radiation dose optimization. Front Oncol. 11:6222442021. View Article : Google Scholar : PubMed/NCBI | |
Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, de Bree R, de Ruiter EJ, Korving J, Begthel H, et al: Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9:852–871. 2019. View Article : Google Scholar : PubMed/NCBI | |
Karakasheva TA, Kijima T, Shimonosono M, Maekawa H, Sahu V, Gabre JT, Cruz-Acuña R, Giroux V, Sangwan V, Whelan KA, et al: Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Curr Protoc Stem Cell Biol. 53:e1092020. View Article : Google Scholar : PubMed/NCBI | |
Hacker BC, Gomez JD, Batista CAS and Rafat M: Growth and characterization of irradiated organoids from mammary glands. J Vis Exp. May 3–2019.(Epub ahead of print). doi: 10.3791/59293. View Article : Google Scholar | |
Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, Couce M, McLendon RE, Sloan AE and Rich JN: A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76:2465–2477. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lumniczky K, Candéias SM, Gaipl US and Frey B: Editorial: Radiation and the immune system: Current knowledge and future perspectives. Front Immunol. 8:19332018. View Article : Google Scholar : PubMed/NCBI | |
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC and Demaria S: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:156182017. View Article : Google Scholar : PubMed/NCBI | |
Park HJ, Griffin RJ, Hui S, Levitt SH and Song CW: Radiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 77:311–327. 2012. View Article : Google Scholar | |
Zhang Z, Liu X, Chen D and Yu J: Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct Target Ther. 7:2582022. View Article : Google Scholar : PubMed/NCBI | |
Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C, Wang Q, Du L, Li Q, Zhao H, et al: Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 7:e23872016. View Article : Google Scholar : PubMed/NCBI | |
Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM and Hong JH: Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol. 2:892012. View Article : Google Scholar : PubMed/NCBI | |
Moussa L, Lapière A, Squiban C, Demarquay C, Milliat F and Mathieu N: BMP antagonists secreted by mesenchymal stromal cells improve colonic organoid formation: Application for the treatment of radiation-induced injury. Cell Transplant. 29:9636897209296832020. View Article : Google Scholar : PubMed/NCBI | |
Gao B and Xiang X: Interleukin-22 from bench to bedside: A promising drug for epithelial repair. Cell Mol Immunol. 16:666–667. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aiyappa-Maudsley R, Chalmers AJ and Parsons JL: Factors affecting the radiation response in glioblastoma. Neurooncol Adv. 4:vdac1562022.PubMed/NCBI | |
Kim YH, Han SH, Kim H, Lee SJ, Joo HW, Kim MJ, Shim S, Kim K, Lee J, Jang WS, et al: Evaluation of the radiation response and regenerative effects of mesenchymal stem cell-conditioned medium in an intestinal organoid system. Biotechnol Bioeng. 117:3639–3650. 2020. View Article : Google Scholar : PubMed/NCBI | |
Perumal V, Corica T, Dharmarajan AM, Sun Z, Dhaliwal SS, Dass CR and Dass J: Circulating tumour cells (CTC), head and neck cancer and radiotherapy; Future. Perspectives. Cancers (Basel). 11:3672019. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen CC, Li HW, Wang YL, Lee CC, Shen YC, Hsieh CY, Lin HL, Chen XX, Cho DY, Hsieh CL, et al: Patient-derived tumor organoids as a platform of precision treatment for malignant brain tumors. Sci Rep. 12:163992022. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Wu Y, Brouwer U, van Vliet T, Wang B, Demaria M, Barazzuol L and Coppes RP: Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death Dis. 11:8542020. View Article : Google Scholar : PubMed/NCBI | |
Seol HS, Oh JH, Choi E, Kim S, Kim H and Nam EJ: Preclinical investigation of patient-derived cervical cancer organoids for precision medicine. J Gynecol Oncol. 34:e352023. View Article : Google Scholar : PubMed/NCBI | |
Lenti E, Bianchessi S, Proulx ST, Palano MT, Genovese L, Raccosta L, Spinelli A, Drago D, Andolfo A, Alfano M, et al: Therapeutic regeneration of lymphatic and immune cell functions upon lympho-organoid transplantation. Stem Cell Reports. 12:1260–1268. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding RB, Chen P, Rajendran BK, Lyu X, Wang H, Bao J, Zeng J, Hao W, Sun H, Wong AH, et al: Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 12:30462021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhang XJ, Feng XY, Chen D, Luo JQ and Zhu BJ: Three-dimensional culture and characterization of patient-derived nasopharyngeal carcinoma organoids. Res Sq. Oct 13–2020.(Epub ahead of print). doi: 10.21203/rs.3.rs-90861/v1. | |
Yip YL, Lin WT, Deng W, Tsang CM and Tsao SW: Establishment of nasopharyngeal carcinoma cell lines, patient-derived xenografts, and immortalized nasopharyngeal epithelial cell lines for nasopharyngeal carcinoma and epstein-barr virus infection studies. Nasopharyngeal Carcinoma. Lee AWM, Lung ML and Ng WT: Elsevier; Amsterdam: 2019, View Article : Google Scholar | |
Rycaj K and Tang DG: Cancer stem cells and radioresistance. Int J Radiat Biol. 90:615–621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG, Worley MJ Jr, Feltmate CM, Nucci MR, Swisher EM, Nguyen H, et al: Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 8:1404–1421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H and Guo L: Epithelial-mesenchymal transition and metabolic switching in cancer: Lessons from somatic cell reprogramming. Front Cell Dev Biol. 8:7602020. View Article : Google Scholar : PubMed/NCBI | |
Populin L, Stebbing MJ and Furness JB: Neuronal regulation of the gut immune system and neuromodulation for treating inflammatory bowel disease. FASEB Bioadv. 3:953–966. 2021. View Article : Google Scholar : PubMed/NCBI | |
Takahashi T: Organoids for drug discovery and personalized medicine. Annu Rev Pharmacol Toxicol. 59:447–462. 2019. View Article : Google Scholar : PubMed/NCBI | |
Foo MA, You M, Chan SL, Sethi G, Bonney GK, Yong WP, Chow EK, Fong ELS, Wang L and Goh BC: Clinical translation of patient-derived tumour organoids-bottlenecks and strategies. Biomark Res. 10:102022. View Article : Google Scholar : PubMed/NCBI | |
Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC and Bruno RD: 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 95:201–213. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conlon GA and Murray GI: Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol. 247:629–640. 2019. View Article : Google Scholar : PubMed/NCBI | |
Long L, Yin M and Min W: 3D Co-culture system of tumor-associated macrophages and ovarian cancer cells. Bio Protoc. 8:e28152018. View Article : Google Scholar : PubMed/NCBI | |
Schaue D, Xie MW, Ratikan JA and McBride WH: Regulatory T cells in radiotherapeutic responses. Front Oncol. 2:902012. View Article : Google Scholar : PubMed/NCBI | |
Pulze L, Congiu T, Brevini TAL, Grimaldi A, Tettamanti G, D'Antona P, Baranzini N, Acquati F, Ferraro F and de Eguileor M: MCF7 spheroid development: New insight about spatio/temporal arrangements of TNTs, Amyloid Fibrils, Cell Connections, and Cellular Bridges. Int J Mol Sci. 21:54002020. View Article : Google Scholar : PubMed/NCBI | |
Kroll KT, Mata MM, Homan KA, Micallef V, Carpy A, Hiratsuka K, Morizane R, Moisan A, Gubler M, Walz AC, et al: Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies. Proc Natl Acad Sci USA. 120:e23053221202023. View Article : Google Scholar : PubMed/NCBI | |
Fabi A, Bhargava R, Fatigoni S, Guglielmo M, Horneber M, Roila F, Weis J, Jordan K and Ripamonti CI; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Cancer-related fatigue: ESMO Clinical Practice Guidelines for diagnosis and treatment. Ann Oncol. 31:713–723. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baskar R, Yap SP, Chua KL and Itahana K: The diverse and complex roles of radiation on cancer treatment: Therapeutic target and genome maintenance. Am J Cancer Res. 2:372–382. 2012.PubMed/NCBI | |
Lin B, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T and Du X: FLASH radiotherapy: History and future. Front Oncol. 11:6444002021. View Article : Google Scholar : PubMed/NCBI | |
Hafeez U, Parakh S, Gan HK and Scott AM: Antibody-drug conjugates for cancer therapy. Molecules. 25:47642020. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Du X, Wang M, Su J, Wei Y and Xu C: Construction of tumor organoids and their application to cancer research and therapy. Theranostics. 14:1101–1125. 2021. View Article : Google Scholar : PubMed/NCBI |