Oncogenic mechanisms of COL10A1 in cancer and clinical challenges (Review)
- Authors:
- Qiang Yi
- Gangfeng Zhu
- Weijian Zhu
- Jiaqi Wang
- Xinting Ouyang
- Kuan Yang
- Jinghua Zhong
-
Affiliations: The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China - Published online on: October 8, 2024 https://doi.org/10.3892/or.2024.8821
- Article Number: 162
-
Copyright: © Yi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Min HY and Lee HY: Molecular targeted therapy for anticancer treatment. Exp Mol Med. 54:1670–1694. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ricard-Blum S: The collagen family. Cold Spring Harb Perspect Biol. 3:a0049782011. View Article : Google Scholar : PubMed/NCBI | |
Salimian N, Peymani M, Ghaedi K, Hashemi M and Rahimi E: Collagen 1A1 (COL1A1) and Collagen11A1(COL11A1) as diagnostic biomarkers in Breast, colorectal and gastric cancers. Gene. 892:1478672024. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Cai J, Zuo Z and Li J: Collagen facilitates the colorectal cancer stemness and metastasis through an integrin/PI3K/AKT/Snail signaling pathway. Biomed Pharmacother. 114:1087082019. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Wang Y, Wang S, Xie Y, Sun K, Li S, Cui W and Wang K: The involvement of collagen family genes in tumor enlargement of gastric cancer. Sci Rep. 13:1002023. View Article : Google Scholar : PubMed/NCBI | |
Zeltz C, Khalil M, Navab R and Tsao MS: Collagen Type XI inhibits lung cancer-associated fibroblast functions and restrains the integrin binding site availability on collagen type I matrix. Int J Mol Sci. 23:117222022. View Article : Google Scholar : PubMed/NCBI | |
Padežnik T, Oleksy A, Cokan A, Takač I and Sobočan M: Changes in the extracellular matrix in endometrial and cervical cancer: A systematic review. Int J Mol Sci. 24:54632023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liang H, Liu W, Li X, Zhang W and Shang X: A novel sequence variant in COL10A1 causing spondylometaphyseal dysplasia accompanied with coxa valga: A case report. Medicine (Baltimore). 98:e164852019. View Article : Google Scholar : PubMed/NCBI | |
Leitinger B and Kwan AP: The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol. 25:355–364. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luckman SP, Rees E and Kwan AP: Partial characterization of cell-type X collagen interactions. Biochem J. 372:485–493. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li T, Huang H, Shi G, Zhao L, Li T, Zhang Z, Liu R, Hu Y, Liu H, Yu J and Li G: TGF-β1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition. Cell Death Dis. 9:8492018. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Xia W, Zhang T, Chen B, Wang H, Song X, Zhang Z, Xu L, Dong G and Jiang F: Upregulated collagen COL10A1 remodels the extracellular matrix and promotes malignant progression in lung adenocarcinoma. Front Oncol. 10:5735342020. View Article : Google Scholar : PubMed/NCBI | |
Wu JY, Lan XL, Yan DM, Fang YY, Peng YX, Liang FF, Jiang L, Huang SN, Mo M, Lin CX, et al: The clinical significance of transcription factor WD repeat and HMG-box DNA binding protein 1 in laryngeal squamous cell carcinoma and its potential molecular mechanism. Pathol Res Pract. 230:1537512022. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Jin M, Gao Z, Yu W and Zhang W: High COL10A1 expression potentially contributes to poor outcomes in gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal. 36:e246122022. View Article : Google Scholar : PubMed/NCBI | |
Chang HJ, Yang MJ, Yang YH, Hou MF, Hsueh EJ and Lin SR: MMP13 is potentially a new tumor marker for breast cancer diagnosis. Oncol Rep. 22:1119–1127. 2009.PubMed/NCBI | |
Sun Y, Wang L, Jiang M, Huang J, Liu Z and Wolfl S: Secreted phosphoprotein 1 upstream invasive network construction and analysis of lung adenocarcinoma compared with human normal adjacent tissues by integrative biocomputation. Cell Biochem Biophys. 56:59–71. 2010. View Article : Google Scholar : PubMed/NCBI | |
Andriani F, Landoni E, Mensah M, Facchinetti F, Miceli R, Tagliabue E, Giussani M, Callari M, De Cecco L, Colombo MP, et al: Diagnostic role of circulating extracellular matrix-related proteins in non-small cell lung cancer. BMC Cancer. 18:8992018. View Article : Google Scholar : PubMed/NCBI | |
Patra R, Das NC and Mukherjee S: Exploring the differential expression and prognostic significance of the COL11A1 gene in human colorectal carcinoma: An integrated bioinformatics approach. Front Genet. 12:6083132021. View Article : Google Scholar : PubMed/NCBI | |
Jung B, Staudacher JJ and Beauchamp D: Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology. 152:36–52. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Yin G, Tuo H, Guo Y, Zhu Y, Zhang L, Yang W, Liu Q and Wang Y: METTL3-induced lncRNA GBAP1 promotes hepatocellular carcinoma progression by activating BMP/SMAD pathway. Biol Direct. 18:532023. View Article : Google Scholar : PubMed/NCBI | |
Iyengar PV, Marvin DL, Lama D, Tan TZ, Suriyamurthy S, Xie F, van Dinther M, Mei H, Verma CS, Zhang L, et al: TRAF4 inhibits bladder cancer progression by promoting BMP/SMAD signaling. Mol Cancer Res. 20:1516–1531. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bierie B and Moses HL: TGF-beta and cancer. Cytokine Growth Factor Rev. 17:29–40. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F and Zhou H: TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol. 15:1352022. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Yue GG, Yuen KK, Gao S, Leung PC, Wong CK and Lau CB: Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways. Phytomedicine. 117:1549002023. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Ling J and Liu L: Collagen type X alpha 1 promotes proliferation, invasion and epithelial-mesenchymal transition of cervical cancer through activation of TGF-β/Smad signaling. Physiol Int. May 18–2022.doi: 10.1556/2060.2022.00006 (Epub ahead of print). View Article : Google Scholar | |
Trono P, Ottavi F and Rosano L: Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: A new avenue of therapeutic intervention. Matrix Biol. 125:31–39. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lv PC, Jiang AQ, Zhang WM and Zhu HL: FAK inhibitors in cancer, a patent review. Expert Opin Ther Pat. 28:139–145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pagani CA, Bancroft AC, Tower RJ, Livingston N, Sun Y, Hong JY, Kent RN III, Strong AL, Nunez JH, Medrano JMR, et al: Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. Sci Adv. 8:eabq61522022. View Article : Google Scholar : PubMed/NCBI | |
Chanez B, Ostacolo K, Badache A and Thuault S: EB1 restricts breast cancer cell invadopodia formation and matrix proteolysis via FAK. Cells. 10:3882021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang Y, Li M, Wu X, Setrerrahmane S and Xu H: Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI | |
Recillas-Targa F: Cancer epigenetics: An overview. Arch Med Res. 53:732–740. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Zeng H, Huang J, Lei L, Tong X, Li S, Zhou Y, Guo H, Khan M, Luo L, et al: Epigenetic regulation of melanogenesis. Ageing Res Rev. 69:1013492021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li X, Deng M, Ye C, Peng Y and Lu Y: Cancer-associated fibroblasts hinder lung squamous cell carcinoma oxidative stress-induced apoptosis via METTL3 mediated m6A methylation of COL10A1. Oxid Med Cell Longev. 2022:43208092022. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol. 13:1172020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Song M, Hong Z, Chen W, Zhang Q, Zhou J, Yang C, He Z, Yu J, Peng X, et al: The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer. J Exp Clin Cancer Res. 42:102023. View Article : Google Scholar : PubMed/NCBI | |
Shi K, Sa R, Dou L, Wu Y, Dong Z, Fu X and Yu H: Correction: METTL3 exerts synergistic effects on m6A methylation and histone modification to regulate the function of VGF in lung adenocarcinoma. Clin Epigenetics. 16:22024. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, et al: METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 69:1193–1205. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo S, Wang E, Wang B, Xue Y, Kuang Y and Liu H: Comprehensive multiomics analyses establish the optimal prognostic model for resectable gastric cancer: Prognosis prediction for resectable GC. Ann Surg Oncol. 31:2078–2089. 2024. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Lyu T, Li H, Liu C, Xie K, Xu L, Li W, Liu H, Zhu J, Lyu Y, et al: LncRNA CEBPA-DT promotes liver cancer metastasis through DDR2/β-catenin activation via interacting with hnRNPC. J Exp Clin Cancer Res. 41:3352022. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Lin W, Ye J, Wang X, Zhang B, Xiong S, Li H and Tan G: DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J Exp Clin Cancer Res. 34:1012015. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Ren Q, Wang J, He Y, Deng H, Wang X and Liu C: miR-199a-3p promotes gastric cancer progression by promoting its stemness potential via DDR2 mediation. Cell Signal. 106:1106362023. View Article : Google Scholar : PubMed/NCBI | |
Wang YG, Xu L, Jia RR, Wu Q, Wang T, Wei J, Ma JL, Shi M and Li ZS: DDR2 induces gastric cancer cell activities via activating mTORC2 signaling and is associated with clinicopathological characteristics of gastric cancer. Dig Dis Sci. 61:2272–2283. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Zhang W, Liu X, Zhao H, Zhang J, Zhang J, Li X, Zhang Y, Bu X, Shi M, et al: Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. J Pathol. 234:526–537. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Lu W, Zhang S, Zhu C, Ren T, Zhu T, Zhao H, Liu Y and Su J: Overexpression of DDR2 contributes to cell invasion and migration in head and neck squamous cell carcinoma. Cancer Biol Ther. 15:612–622. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, Stewart TA, Thompson EW and Monteith GR: Targeting EMT in cancer: Opportunities for pharmacological intervention. Trends Pharmacol Sci. 35:479–488. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, Li L, Wu W and Hann SS: Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 34:412015. View Article : Google Scholar : PubMed/NCBI | |
Wen Z, Sun J, Luo J, Fu Y, Qiu Y, Li Y, Xu Y, Wu H and Zhang Q: COL10A1-DDR2 axis promotes the progression of pancreatic cancer by regulating MEK/ERK signal transduction. Front Oncol. 12:10493452022. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Yu Z, Liu X, Hu F, Liu X, Fu X, Liu Y and Zou Z: A meta-analysis and bioinformatics analysis of P4HB expression levels in the prognosis of cancer patients. Pathol Res Pract. 245:1544742023. View Article : Google Scholar : PubMed/NCBI | |
Feng D, Wang J, Li D, Wu R, Tuo Z, Yu Q, Ye L, Miyamoto A, Yoo KH, Wang C, et al: Targeting Prolyl 4-hydroxylase subunit beta (P4HB) in cancer: New roads to travel. Aging Dis. Nov 26–2023. | |
Feng D, Li L, Li D, Wu R, Zhu W, Wang J, Ye L and Han P: Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur J Med Res. 28:2452023. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Wang J, Zhuang J, Ma X, Zheng N, Song Y and Xia W: P4HB modulates epithelial-mesenchymal transition and the β-catenin/Snail pathway influencing chemoresistance in liver cancer cells. Oncol Lett. 20:257–265. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Wu X and Zhou F: Collagen Type X Alpha 1 (COL10A1) Contributes to cell proliferation, migration, and invasion by targeting Prolyl 4-hydroxylase beta polypeptide (P4HB) in breast cancer. Med Sci Monit. 27:e9289192021.PubMed/NCBI | |
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Zhao H, Guo Y, Zhang K, Shang F and Liu T: Bioinformatics-based analysis: Noncoding RNA-Mediated COL10A1 is associated with poor prognosis and immune cell infiltration in pancreatic cancer. J Healthc Eng. 2022:79049822022. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Zhang W, Wu Z, Liu H, Hu H, Shi H, Li S and Zhang X: Construction of a circular RNA-microRNA-messengerRNA regulatory network in stomach adenocarcinoma. J Cell Biochem. 121:1317–1331. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li HH, Wang JD, Wang W, Wang HF and Lv JQ: Effect of miR-26a-5p on gastric cancer cell proliferation, migration and invasion by targeting COL10A1. Eur Rev Med Pharmacol Sci. 24:1186–1194. 2020.PubMed/NCBI | |
Guo Q, Zheng M, Xu Y, Wang N and Zhao W: MiR-384 induces apoptosis and autophagy of non-small cell lung cancer cells through the negative regulation of Collagen α-1(X) chain gene. Biosci Rep. 39:2019. View Article : Google Scholar | |
Mamdani H, Matosevic S, Khalid AB, Durm G and Jalal SI: Immunotherapy in lung cancer: Current landscape and future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Li L, Xie X, Zhuang D and Hu C: Integrated bioinformatics analysis of microarray data from the GEO database to identify the candidate genes linked to poor prognosis in lung adenocarcinoma. Technol Health Care. 31:579–592. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Zhang W, Hu Y and Yi X: Bioinformatics approach reveals systematic mechanism underlying lung adenocarcinoma. Tumori. 101:281–286. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Chang D, Li W, Zhao F, Ren X and Hou B: Identification of core genes and clinical outcomes in tumors originated from endoderm (gastric cancer and lung carcinoma) via bioinformatics analysis. Medicine (Baltimore). 100:e251542021. View Article : Google Scholar : PubMed/NCBI | |
Díaz Del Arco C, Ortega Medina L, Estrada Muñoz L, García Gómez de Las Heras S and Fernández Aceñero MJ: Is there still a place for conventional histopathology in the age of molecular medicine? Laurén classification, inflammatory infiltration and other current topics in gastric cancer diagnosis and prognosis. Histol Histopathol. 36:587–613. 2021.PubMed/NCBI | |
Cai Z, Wei Y, Chen S, Gong Y, Fu Y, Dai X, Zhou Y, Yang H, Tang L and Liu H: Screening and identification of key biomarkers in alimentary tract cancers: A bioinformatic analysis. Cancer Biomark. 29:221–233. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Luo Y, Tian Q, Lai Y, Xu L, Yun H, Liang Y, Liao D, Gu R, Liu L, et al: Integrated bioinformatics analysis for identifying the significant genes as poor prognostic markers in gastric adenocarcinoma. J Oncol. 2022:90804602022.PubMed/NCBI | |
Aktas SH, Taskin-Tok T, Al-Khafaji K and Akın-Balı DF: A detailed understanding of the COL10A1 and SOX9 genes interaction based on potentially damaging mutations in gastric cancer using computational techniques. J Biomol Struct Dyn. 40:11533–11544. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shen N, Zhu S, Zhang Z and Yong X: High Expression of COL10A1 is an independent predictive poor prognostic biomarker and associated with immune infiltration in advanced gastric cancer microenvironment. J Oncol. 2022:14633162022. View Article : Google Scholar : PubMed/NCBI | |
Moreira AM, Ferreira RM, Carneiro P, Figueiredo J, Osório H, Barbosa J, Preto J, Pinto-do-Ó P, Carneiro F and Seruca R: Proteomic identification of a gastric tumor ECM signature associated with cancer progression. Front Mol Biosci. 9:8185522022. View Article : Google Scholar : PubMed/NCBI | |
Necula L, Matei L, Dragu D, Pitica I, Neagu AI, Bleotu C, Dima S, Popescu I, Diaconu CC and Chivu-Economescu M: High plasma levels of COL10A1 are associated with advanced tumor stage in gastric cancer patients. World J Gastroenterol. 26:3024–3033. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang X, Zhang Q, Zhang T, Xie J, Wei W, Wang Y, Yu H and Zhou H: A necroptosis related prognostic model of pancreatic cancer based on single cell sequencing analysis and transcriptome analysis. Front Immunol. 13:10224202022. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Zheng J, Su Z, Chen B and Gu S: COL10A1 promotes tumorigenesis by modulating CD276 in pancreatic adenocarcinoma. BMC Gastroenterol. 23:3972023. View Article : Google Scholar : PubMed/NCBI | |
Thorlacius-Ussing J, Jensen C, Nissen NI, Cox TR, Kalluri R, Karsdal M and Willumsen N: The collagen landscape in cancer: Profiling collagens in tumors and in circulation reveals novel markers of cancer-associated fibroblast subtypes. J Pathol. 262:22–36. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lou X, Gao H, Xu X, Ye Z, Zhang W, Wang F, Chen J, Zhang Y, Chen X, Qin Y, et al: The Interplay of four main pathways recomposes immune landscape in primary and metastatic Gastroenteropancreatic neuroendocrine tumors. Front Oncol. 12:8084482022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Chen B, Liu K, Ma Y, Liu Y, Zhou H and Wei P: Infection with COVID-19 promotes the progression of pancreatic cancer through the PI3K-AKT signaling pathway. Discov Oncol. 14:2252023. View Article : Google Scholar : PubMed/NCBI | |
Abdi E, Latifi-Navid S and Latifi-Navid H: LncRNA polymorphisms and breast cancer risk. Pathol Res Pract. 229:1537292022. View Article : Google Scholar : PubMed/NCBI | |
Won KA and Spruck C: Triple-negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol. 57:1245–1261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA and Oesterreich S: The great immune escape: Understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 13:23–40. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Chen H, Wang M, Bai F and Wu K: Bioinformatics analysis of prognostic significance of COL10A1 in breast cancer. Biosci Rep. 40:BSR201932862020. View Article : Google Scholar : PubMed/NCBI | |
Malvia S, Chintamani C, Sarin R, Dubey US, Saxena S and Bagadi SAR: Aberrant expression of COL14A1, CELRS3, and CTHRC1 in breast cancer сells. Exp Oncol. 45:28–43. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brodsky AS, Xiong J, Yang D, Schorl C, Fenton MA, Graves TA, Sikov WM, Resnick MB and Wang Y: Identification of stromal ColXα1 and tumor-infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in estrogen receptor-positive/HER2-positive breast cancer. BMC Cancer. 16:2742016. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Li Y, Gu D, Xu J, Wang R, Wang H and Liu C: High expression COL10A1 promotes breast cancer progression and predicts poor prognosis. Heliyon. 8:e110832022. View Article : Google Scholar : PubMed/NCBI | |
Bao S and He G: Identification of key genes and key pathways in breast cancer based on machine learning. Med Sci Monit. 28:e9355152022. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Feng R, Chen Z, Shi W, Li C, Liu H, Wu K, Li D and Li X: Identification of cancer-associated fibroblast subtype of triple-negative breast cancer. J Oncol. 2022:64526362022.PubMed/NCBI | |
Giussani M, Landoni E, Merlino G, Turdo F, Veneroni S, Paolini B, Cappelletti V, Miceli R, Orlandi R, Triulzi T and Tagliabue E: Extracellular matrix proteins as diagnostic markers of breast carcinoma. J Cell Physiol. 233:6280–6290. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z, Wu P, Xiong X and Gao X: Comprehensive analysis of the biological functions of endoplasmic reticulum stress in prostate cancer. Front Endocrinol (Lausanne). 14:10902772023. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Liu D, Qin Z, Liang Z, Xie H, Yi B, Wang K, Lin G, Liu R, Yang K, et al: Experimental validation and pan-cancer analysis identified COL10A1 as a novel oncogene and potential therapeutic target in prostate cancer. Aging (Albany NY). 15:15134–15160. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang J, Chen S, Li K, Wan S and Yang L: COL10A1 as a prognostic biomarker in association with immune infiltration in prostate cancer. Curr Cancer Drug Targets. 24:340–353. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wang R, Sun X, Huang K, Jin J, Lan L, Jian Y, Xu Z, Wu H, Wang S and Wang J: An integrative multi-omics analysis based on nomogram for predicting prostate cancer bone metastasis incidence. Genet Res (Camb). 2022:82137232022. View Article : Google Scholar : PubMed/NCBI | |
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 18:1972017. View Article : Google Scholar : PubMed/NCBI | |
Solé X, Crous-Bou M, Cordero D, Olivares D, Guinó E, Sanz-Pamplona R, Rodriguez-Moranta F, Sanjuan X, de Oca J, Salazar R and Moreno V: Discovery and validation of new potential biomarkers for early detection of colon cancer. PLoS One. 9:e1067482014. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Li T, Ye G, Zhao L, Zhang Z, Mo D, Wang Y, Zhang C, Deng H, Li G and Liu H: High expression of COL10A1 is associated with poor prognosis in colorectal cancer. Onco Targets Ther. 11:1571–1581. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kahlert UD, Shi W, Strecker M, Scherpinski LA, Wartmann T, Dölling M, Perrakis A, Relja B, Mengoni M, Braun A and Croner RS: COL10A1 allows stratification of invasiveness of colon cancer and associates to extracellular matrix and immune cell enrichment in the tumor parenchyma. Front Oncol. 12:10075142022. View Article : Google Scholar : PubMed/NCBI | |
He C, Liu W, Xiong Y, Pan L, Luo L, Tu Y, Song R and Chen W: VSNL1 promotes cell proliferation, migration, and invasion in colorectal cancer by binding with COL10A1. Ann Clin Lab Sci. 52:60–72. 2022.PubMed/NCBI | |
Sroor FM, Aboelenin MM, Mahrous KF, Mahmoud K, Elwahy AHM and Abdelhamid IA: Novel 2-cyanoacrylamido-4,5,6,7-tetrahydrobenzo[b]thiophene derivatives as potent anticancer agents. Arch Pharm (Weinheim). 353:e20000692020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Chen Z, Fang Y, Su M, Xu Y, Wang Z, Gyamfi MA and Zhao J: Prediction of prognosis and recurrence of bladder cancer by ECM-Related genes. J Immunol Res. 2022:17930052022. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Diao R, Feng G, Mu X and Li A: Risk score based on three mRNA expression predicts the survival of bladder cancer. Oncotarget. 8:61583–61591. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu SX, Huang J, Liu ZW, Chen HG, Guo P, Cai QQ, Zheng JJ, Qin HD, Zheng ZS, Chen X, et al: A Genomic-clinicopathologic Nomogram for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine. 31:54–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karagoz K, Lehman HL, Stairs DB, Sinha R and Arga KY: Proteomic and metabolic signatures of esophageal squamous cell carcinoma. Curr Cancer Drug Targets. Feb 2–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang X, Zheng K, Liu Y, Li J and Wang S, Liu K, Song X, Li N, Xie S and Wang S: The clinical significance of collagen family gene expression in esophageal squamous cell carcinoma. PeerJ. 7:e77052019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang X, Shi L, Xu J and Sun B: Predictions for high COL1A1 and COL10A1 expression resulting in a poor prognosis in esophageal squamous cell carcinoma by bioinformatics analyses. Transl Cancer Res. 9:85–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Wang X, Wang F, Peng X, Li P, Liu S and Zhang D: Identification of four genes and biological characteristics of esophageal squamous cell carcinoma by integrated bioinformatics analysis. Cancer Cell Int. 21:1232021. View Article : Google Scholar : PubMed/NCBI | |
Lapa RML, Barros-Filho MC, Marchi FA, Domingues MAC, de Carvalho GB, Drigo SA, Kowalski LP and Rogatto SR: Integrated miRNA and mRNA expression analysis uncovers drug targets in laryngeal squamous cell carcinoma patients. Oral Oncol. 93:76–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Du LY, Guo F, Li X and Cheng B: Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Mol Cell Biochem. 458:11–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zheng X, Hua L, Zheng X, Zhang Y, Sun B, Tao Z and Gao J: Screening and bioinformatical analysis of differentially expressed genes in nasopharyngeal carcinoma. J Cancer. 12:1867–1883. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vishnubalaji R, Shaath H, Elkord E and Alajez NM: Long non-coding RNA (lncRNA) transcriptional landscape in breast cancer identifies LINC01614 as non-favorable prognostic biomarker regulated by TGFβ and focal adhesion kinase (FAK) signaling. Cell Death Discov. 5:1092019. View Article : Google Scholar : PubMed/NCBI |