1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bourreau C, Treps L, Faure S, Fradin D and
Clere N: Therapeutic strategies for non-small cell lung cancer:
Experimental models and emerging biomarkers to monitor drug
efficacies. Pharmacol Ther. 242:1083472023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ettinger DS, Wood DE, Aisner DL, Akerley
W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico
TA, et al: Non-small cell lung cancer, version 3.2022, NCCN
clinical practice guidelines in oncology. J Natl Compr Canc Netw.
20:497–530. 2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Riely GJ, Wood DE, Ettinger DS, Aisner DL,
Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, et
al: Non-small cell lung cancer, version 4.2024, NCCN clinical
practice guidelines in oncology. J Natl Compr Canc Netw.
22:249–274. 2024. View Article : Google Scholar : PubMed/NCBI
|
6
|
Steens J and Klein D: HOX genes in stem
cells: Maintaining cellular identity and regulation of
differentiation. Front Cell Dev Biol. 10:10029092022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jonkers J, Pai P and Sukumar S: Multiple
roles of HOX proteins in metastasis: Let me count the ways. Cancer
Metastasis Rev. 39:661–679. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Paço A, de Bessa Garcia SA and Freitas R:
Methylation in HOX clusters and its applications in cancer therapy.
Cells. 9:16132020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Belpaire M, Taminiau A, Geerts D and
Rezsohazy R: HOXA1, a breast cancer oncogene. Biochim Biophys Acta
Rev Cancer. 1877:1887472022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li L, Zhang X, Liu Q, Yin H, Diao Y, Zhang
Z, Wang Y, Gao Y, Ren X, Li J, et al: Emerging role of HOX genes
and their related long noncoding RNAs in lung cancer. Crit Rev
Oncol Hematol. 139:1–6. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang R, Zhang G, Dong Z, Wang S, Li Y,
Lian F, Liu X, Li H, Wei X and Cui H: Homeobox A3 and KDM6A
cooperate in transcriptional control of aerobic glycolysis and
glioblastoma progression. Neuro Oncol. 25:635–647. 2023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bolt CC, Lopez-Delisle L, Mascrez B and
Duboule D: Mesomelic dysplasias associated with the HOXD locus are
caused by regulatory reallocations. Nat Commun. 12:50132021.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Yu M, Zhan J and Zhang H: HOX family
transcription factors: Related signaling pathways and
post-translational modifications in cancer. Cell Signal.
66:1094692020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hamada J, Omatsu T, Okada F, Furuuchi K,
Okubo Y, Takahashi Y, Tada M, Miyazaki YJ, Taniguchi Y, Shirato H,
et al: Overexpression of homeobox gene HOXD3 induces coordinate
expression of metastasis-related genes in human lung cancer cells.
Int J Cancer. 93:516–525. 2001. View Article : Google Scholar
|
15
|
Liu Y, Miao L, Ni R, Zhang H, Li L, Wang
X, Li X and Wang J: microRNA-520a-3p inhibits proliferation and
cancer stem cell phenotype by targeting HOXD8 in non-small cell
lung cancer. Oncol Rep. 36:3529–3535. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wan K, Shao J, Liu X, Cai Y, Xu Y, Li L,
Xiong L and Liang S: HOXD9 contributes to the Warburg effect and
tumor metastasis in non-small cell lung cancer via transcriptional
activation of PFKFB3. Exp Cell Res. 427:1135832023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li S, Zhang J, Zhao Y, Wang F, Chen Y and
Fei X: miR-224 enhances invasion and metastasis by targeting HOXD10
in non-small cell lung cancer cells. Oncol Lett. 15:7069–7075.
2018.PubMed/NCBI
|
18
|
Shah N and Sukumar S: The Hox genes and
their roles in oncogenesis. Nat Rev Cancer. 10:361–371. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Espín-Pérez A, Brennan K, Ediriwickrema
AS, Gevaert O, Lossos IS and Gentles AJ: Peripheral blood DNA
methylation profiles predict future development of B-cell
Non-Hodgkin Lymphoma. NPJ Precis Oncol. 6:532022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Na F, Pan X, Chen J, Chen X, Wang M, Chi
P, You L, Zhang L, Zhong A, Zhao L, et al: KMT2C deficiency
promotes small cell lung cancer metastasis through DNMT3A-mediated
epigenetic reprogramming. Nat Cancer. 3:753–767. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mancarella D and Plass C: Epigenetic
signatures in cancer: Proper controls, current challenges and the
potential for clinical translation. Genome Med. 13:232021.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang J, Yang J, Li D and Li J:
Technologies for targeting DNA methylation modifications: Basic
mechanism and potential application in cancer. Biochim Biophys Acta
Rev Cancer. 1875:1884542021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen Z and Zhang Y: Role of mammalian DNA
methyltransferases in development. Annu Rev Biochem. 89:135–158.
2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Flausino CS, Daniel FI and Modolo F: DNA
methylation in oral squamous cell carcinoma: From its role in
carcinogenesis to potential inhibitor drugs. Crit Rev Oncol
Hematol. 164:1033992021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhu L, Tang N, Hang H, Zhou Y, Dong J,
Yang Y, Mao L, Qiu Y, Fu X and Cao W: Loss of claudin-1 incurred by
DNMT aberration promotes pancreatic cancer progression. Cancer
Lett. 586:2166112024. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chandrashekar DS, Karthikeyan SK, Korla
PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne
U, et al: UALCAN: An update to the integrated cancer data analysis
platform. Neoplasia. 25:18–27. 2022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Győrffy B: Integrated analysis of public
datasets for the discovery and validation of survival-associated
genes in solid tumors. Innovation (Camb). 5:1006252024.PubMed/NCBI
|
28
|
Li A, Xie J, Lv L, Zheng Z, Yang W, Zhuo
W, Yang S, Cai D, Duan J, Liu P, et al: RPL9 acts as an oncogene by
shuttling miRNAs through exosomes in human hepatocellular carcinoma
cells. Int J Oncol. 64:582024. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Li LC and Dahiya R: MethPrimer: Designing
primers for methylation PCRs. Bioinformatics. 18:1427–1431. 2002.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zuo Y, Zhong J, Bai H, Xu B, Wang Z, Li W,
Chen Y, Jin S, Wang S, Wang X, et al: Genomic and epigenomic
profiles distinguish pulmonary enteric adenocarcinoma from lung
metastatic colorectal cancer. EBioMedicine. 82:1041652022.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Pu W, Qian F, Liu J, Shao K, Xiao F, Jin
Q, Liu Q, Jiang S, Zhang R, Zhang J, et al: Targeted bisulfite
sequencing reveals dna methylation changes in zinc finger family
genes associated with KRAS mutated colorectal cancer. Front Cell
Dev Biol. 9:7598132021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xi Y and Li W: BSMAP: Whole genome
bisulfite sequence MAPping program. BMC Bioinformatics. 10:2322009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yachida S, Mizutani S, Shiroma H, Shiba S,
Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M,
et al: Metagenomic and metabolomic analyses reveal distinct
stage-specific phenotypes of the gut microbiota in colorectal
cancer. Nat Med. 25:968–976. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Salmon-Divon M, Dvinge H, Tammoja K and
Bertone P: PeakAnalyzer: Genome-wide annotation of chromatin
binding and modification loci. BMC Bioinformatics. 11:4152010.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Hull RP, Srivastava PK, D'Souza Z, Atanur
SS, Mechta-Grigoriou F, Game L, Petretto E, Cook HT, Aitman TJ and
Behmoaras J: Combined ChIP-Seq and transcriptome analysis
identifies AP-1/JunD as a primary regulator of oxidative stress and
IL-1β synthesis in macrophages. BMC Genomics. 14:922013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja
P and Tanwar M: Role of HOX genes in cancer progression and their
therapeutical aspects. Gene. 919:1485012024. View Article : Google Scholar : PubMed/NCBI
|
42
|
Morgan R, Hunter K and Pandha HS:
Downstream of the HOX genes: Explaining conflicting tumour
suppressor and oncogenic functions in cancer. Int J Cancer.
150:1919–1932. 2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Paco A, Aparecida de Bessa Garcia S,
Leitao Castro J, Costa-Pinto AR and Freitas R: Roles of the HOX
proteins in cancer invasion and metastasis. Cancers (Basel).
13:102020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tan X, Liu Z, Wang Y, Wu Z, Zou Y, Luo S,
Tang Y, Chen D, Yuan G and Yao K: miR-138-5p-mediated HOXD11
promotes cell invasion and metastasis by activating the
FN1/MMP2/MMP9 pathway and predicts poor prognosis in penile
squamous cell carcinoma. Cell Death Dis. 13:8162022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang J, Deng M, Tong H, Xue W, Guo Y,
Wang J, Chen L and Wang S: A novel miR-7156-3p-HOXD13 axis
modulates glioma progression by regulating tumor cell stemness. Int
J Biol Sci. 16:3200–3209. 2020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang Y, Zhang M, Zhao Y, Deng T, Zhou X,
Qian H, Wang M, Zhang C, Huo Z, Mao Z, et al: HOXD8 suppresses
renal cell carcinoma growth by upregulating SHMT1 expression.
Cancer Sci. 114:4583–4595. 2023. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang L, Wang X, Sun H, Wang W and Cao L: A
pan-cancer analysis of the role of HOXD1, HOXD3, and HOXD4 and
validation in renal cell carcinoma. Aging (Albany NY).
15:10746–10766. 2023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hu X, Wang Y, Zhang X, Li C, Zhang X, Yang
D, Liu Y and Li L: DNA methylation of HOX genes and its clinical
implications in cancer. Exp Mol Pathol. 134:1048712023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang L, Qiao C, Cao L, Cai S, Ma X, Song
X, Jiang Q, Huang C and Wang J: Significance of HOXD transcription
factors family in progression, migration and angiogenesis of
cancer. Crit Rev Oncol Hematol. 179:1038092022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kron KJ, Liu L, Pethe VV, Demetrashvili N,
Nesbitt ME, Trachtenberg J, Ozcelik H, Fleshner NE, Briollais L,
van der Kwast TH and Bapat B: DNA methylation of HOXD3 as a marker
of prostate cancer progression. Lab Invest. 90:1060–1067. 2010.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Loi E, Zavattari C, Tommasi A, Moi L,
Canale M, Po A, Sabato C, Vega-Benedetti AF, Ziranu P, Puzzoni M,
et al: HOXD8 hypermethylation as a fully sensitive and specific
biomarker for biliary tract cancer detectable in tissue and bile
samples. Br J Cancer. 126:1783–1794. 2022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shiraishi M, Sekiguchi A, Oates AJ, Terry
MJ and Miyamoto Y: HOX gene clusters are hotspots of de novo
methylation in CpG islands of human lung adenocarcinomas. Oncogene.
21:3659–3662. 2002. View Article : Google Scholar : PubMed/NCBI
|
53
|
Huang W, Li H, Yu Q, Xiao W and Wang DO:
LncRNA-mediated DNA methylation: An emerging mechanism in cancer
and beyond. J Exp Clin Cancer Res. 41:1002022. View Article : Google Scholar : PubMed/NCBI
|
54
|
Geng X, Zhao J, Huang J, Li S, Chu W, Wang
WS, Chen ZJ and Du Y: lnc-MAP3K13-7:1 inhibits ovarian GC
proliferation in PCOS via DNMT1 downregulation-mediated CDKN1A
promoter hypomethylation. Mol Ther. 29:1279–1293. 2021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Xu SF, Zheng Y, Zhang L, Wang P, Niu CM,
Wu T, Tian Q, Yin XB, Shi SS, Zheng L and Gao LM: Long non-coding
RNA LINC00628 interacts epigenetically with the LAMA3 promoter and
contributes to lung adenocarcinoma. Mol Ther Nucleic Acids.
18:166–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wakefield LM and Hill CS: Beyond TGFβ:
Roles of other TGFβ superfamily members in cancer. Nat Rev Cancer.
13:328–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Derynck R, Turley SJ and Akhurst RJ: TGFβ
biology in cancer progression and immunotherapy. Nat Rev Clin
Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI
|
58
|
Massagué J and Sheppard D: TGF-β signaling
in health and disease. Cell. 186:4007–4037. 2023. View Article : Google Scholar : PubMed/NCBI
|
59
|
Langenfeld EM, Bojnowski J, Perone J and
Langenfeld J: Expression of bone morphogenetic proteins in human
lung carcinomas. Ann Thorac Surg. 80:1028–1032. 2005. View Article : Google Scholar : PubMed/NCBI
|
60
|
Huang F, Cao Y, Wang C, Lan R, Wu B, Xie
X, Hong J, Fu L and Wu G: PNMA5 promotes bone metastasis of
non-small-cell lung cancer as a target of BMP2 signaling. Front
Cell Dev Biol. 9:6789312021. View Article : Google Scholar : PubMed/NCBI
|
61
|
Vora M, Mondal A, Jia D, Gaddipati P, Akel
M, Gilleran J, Roberge J, Rongo C and Langenfeld J: Bone
morphogenetic protein signaling regulation of AMPK and PI3K in lung
cancer cells and C. elegans. Cell Biosci. 12:762022. View Article : Google Scholar : PubMed/NCBI
|
62
|
Wu CK, Wei MT, Wu HC, Wu CL, Wu CJ, Liaw H
and Su WP: BMP2 promotes lung adenocarcinoma metastasis through BMP
receptor 2-mediated SMAD1/5 activation. Sci Rep. 12:163102022.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Kraunz KS, Nelson HH, Liu M, Wiencke JK
and Kelsey KT: Interaction between the bone morphogenetic proteins
and Ras/MAP-kinase signalling pathways in lung cancer. Br J Cancer.
93:949–952. 2005. View Article : Google Scholar : PubMed/NCBI
|
64
|
Zhang L, Liu J, Wang H, Xu Z, Wang Y, Chen
Y and Peng H: MYH16 upregulation is associated with lung
adenocarcinoma aggressiveness and immune infiltration. J Biochem
Mol Toxicol. 37:e234902023. View Article : Google Scholar : PubMed/NCBI
|