1
|
Anwanwan D, Singh SK, Singh S, Saikam V
and Singh R: Challenges in liver cancer and possible treatment
approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142020.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Rumgay H, Arnold M, Ferlay J, Lesi O,
Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I:
Global burden of primary liver cancer in 2020 and predictions to
2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Huang DQ, El-Serag HB and Loomba R: Global
epidemiology of NAFLD-related HCC: Trends, predictions, risk
factors and prevention. Nat Rev Gastroenterol Hepatol. 18:223–238.
2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vogel A and Saborowski A: Medical therapy
of HCC. J Hepatol. 76:208–210. 2022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou C, Lu M, Cheng J, Rohani ER, Hamezah
HS, Han R and Tong X: Review on the pharmacological properties of
phillyrin. Molecules. 27:36702022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tang K, Zhong B, Luo Q, Liu Q, Chen X, Cao
D, Li X and Yang S: Phillyrin attenuates norepinephrine-induced
cardiac hypertrophy and inflammatory response by suppressing
p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. Eur J Pharmacol.
927:1750222022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang T, Wen X, Zhang Z, Xie M and Zhou J:
Phillyrin ameliorates diabetic nephropathy through the
PI3K/Akt/GSK-3β signalling pathway in streptozotocin-induced
diabetic mice. Hum Exp Toxicol. 40 (12 Suppl):S487–S496. 2021.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Fang Z, Wei L, Lv Y, Wang T, Hamezah HS,
Han R and Tong X: Phillyrin restores metabolic disorders in mice
fed with high-fat diet through inhibition of interleukin-6-mediated
basal lipolysis. Front Nutr. 9:9562182022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Do MT, Kim HG, Choi JH, Khanal T, Park BH,
Tran TP, Hwang YP, Na M and Jeong HG: Phillyrin attenuates high
glucose-induced lipid accumulation in human HepG2 hepatocytes
through the activation of LKB1/AMP-activated protein
kinase-dependent signaling. Food Chem. 136:415–425. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y, Ding Y, Zhao H, Wang Z, Zeng F,
Qian Z, Li J, Ma T and Huang C: Downregulating PDPK1 and taking
phillyrin as PDPK1-targeting drug protect hepatocytes from
alcoholic steatohepatitis by promoting autophagy. Cell Death Dis.
13:9912022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tang X, Teng J and Lu K: Phillyrin
sensitizes lung cancer cells to ferroptosis through inhibiting
FTH1/SLC7A11 axis. Int J Clin Pharmacol Ther. 62:8–19. 2024.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang DH, He X and He Q: Combining use of
Phillyrin and autophagy blocker alleviates laryngeal squamous cell
carcinoma via AMPK/mTOR/p70S6K signaling. Biosci Rep.
39:BSR201904592019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu J, Wang Y, Jiang R, Xue R, Yin X, Wu M
and Meng Q: Ferroptosis in liver disease: New insights into disease
mechanisms. Cell Death Discov. 7:2762021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xia X, Fan X, Zhao M and Zhu P: The
relationship between ferroptosis and tumors: A novel landscape for
therapeutic approach. Curr Gene Ther. 19:117–124. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li Y, Wei J, Sun Y, Zhou W, Ma X, Guo J,
Zhang H and Jin T: DLGAP5 regulates the proliferation, migration,
invasion, and cell cycle of breast cancer cells via the JAK2/STAT3
signaling axis. Int J Mol Sci. 24:158192023. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li J and Zhu Y: Recent advances in liver
cancer stem cells: Non-coding RNAs, oncogenes and oncoproteins.
Front Cell Dev Biol. 8:5483352020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ding X, Lu D and Fan J: A natural product
phillygenin suppresses osteosarcoma growth and metastasis by
regulating the SHP-1/JAK2/STAT3 signaling. Biosci Biotechnol
Biochem. 85:307–314. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim TW, Shin JS, Chung KS, Lee YG, Baek NI
and Lee KT: Anti-inflammatory mechanisms of koreanaside A, a Lignan
isolated from the flower of Forsythia koreana, against LPS-induced
macrophage activation and DSS-induced colitis mice: The crucial
role of AP-1, NF-κB, and JAK/STAT signaling. Cells. 8:11632019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Pan X, Cao X, Li N, Xu Y, Wu Q, Bai J, Yin
Z, Luo L and Lan L: Forsythin inhibits lipopolysaccharide-induced
inflammation by suppressing JAK-STAT and p38 MAPK signalings and
ROS production. Inflamm Res. 63:597–608. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Su M, Zhou D, Huang J, Yang T, Zhou Q and
Tan Y: Forsythiaside A exhibits anti-migration and
anti-inflammation effects in rheumatoid arthritis in vitro model.
Int J Rheum Dis. 27:e149762024. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cerapio JP, Marchio A, Cano L, López I,
Fournié JJ, Régnault B, Casavilca-Zambrano S, Ruiz E, Dejean A,
Bertani S and Pineau P: Global DNA hypermethylation pattern and
unique gene expression signature in liver cancer from patients with
Indigenous American ancestry. Oncotarget. 12:475–492. 2021.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu T, Zhang H, Yi S, Gu L and Zhou M:
Mutual regulation of MDM4 and TOP2A in cancer cell proliferation.
Mol Oncol. 13:1047–1058. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang K, Zheng X, Sun Y, Feng X, Wu X, Liu
W, Gao C, Yan Y, Tian W and Wang Y: TOP2A modulates signaling via
the AKT/mTOR pathway to promote ovarian cancer cell proliferation.
Cancer Biol Ther. 25:23251262024. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li C, Cui X, Li Y, Guo D and He S:
Identification of ferroptosis and drug resistance related hub genes
to predict the prognosis in Hepatocellular carcinoma. Sci Rep.
13:86812023. View Article : Google Scholar : PubMed/NCBI
|
28
|
Su W, Huang B, Zhang Q, Han W, An L, Guan
Y, Ji J and Yu D: Exploring potential biomarkers, ferroptosis
mechanisms, and therapeutic targets associated with cutaneous
squamous cell carcinoma via integrated transcriptomic analysis. J
Healthc Eng. 2022:35240222022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang R, Gao W, Wang Z, Jian H, Peng L, Yu
X, Xue P, Peng W, Li K and Zeng P: Polyphyllin I induced
ferroptosis to suppress the progression of hepatocellular carcinoma
through activation of the mitochondrial dysfunction via
Nrf2/HO-1/GPX4 axis. Phytomedicine. 122:1551352024. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Q, Bin C, Xue Q, Gao Q, Huang A, Wang
K and Tang N: GSTZ1 sensitizes hepatocellular carcinoma cells to
sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis.
Cell Death Dis. 12:4262021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang W, Qiao W and Zuo L: A1
and A2b adenosine receptors regulate GPX4 against
ferroptosis of cardiomyocytes in myocardial infarction rat model
and in vitro. Tissue Cell. 77:1018282022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y,
Kang L, Zhao Y, Du L, Zhang M, et al: Legumain promotes tubular
ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in
AKI. Cell Death Dis. 12:652021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu Y, Zhao Y, Yang HZ, Wang YJ and Chen Y:
HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells
in response to high glucose. Biosci Rep. 41:BSR202029242021.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Mengie Ayele T, Tilahun Muche Z, Behaile
Teklemariam A, Bogale Kassie A and Chekol Abebe E: Role of
JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy
resistance, and treatment of solid tumors: A systemic review. J
Inflamm Res. 15:1349–1364. 2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kohal R, Bisht P, Gupta GD and Verma SK:
Targeting JAK2/STAT3 for the treatment of cancer: A review on
recent advancements in molecular development using structural
analysis and SAR investigations. Bioorg Chem. 143:1070952024.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Li H, Yang P, Wang J, Zhang J, Ma Q, Jiang
Y, Wu Y, Han T and Xiang D: HLF regulates ferroptosis, development
and chemoresistance of triple-negative breast cancer by activating
tumor cell-macrophage crosstalk. J Hematol Oncol. 15:22022.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Li X and Liu J: FANCD2 inhibits
ferroptosis by regulating the JAK2/STAT3 pathway in osteosarcoma.
BMC Cancer. 23:1792023. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Y, Zhang Y, Qiu Q, Wang L, Mao H, Hu J,
Chen Z, Du Y and Liu X: Energy-stress-mediated AMPK activation
promotes GPX4-dependent ferroptosis through the JAK2/STAT3/P53 axis
in renal cancer. Oxid Med Cell Longev. 2022:23531152022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nishibe S, Mitsui-Saitoh K, Sakai J and
Fujikawa T: The biological effects of forsythia leaves containing
the cyclic AMP phosphodiesterase 4 inhibitor phillyrin. Molecules.
26:23622021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhou C, Yan L, Xu J, Hamezah HS, Wang T,
Du F, Tong X and Han R: Phillyrin: An adipose triglyceride lipase
inhibitor supported by molecular docking, dynamics simulation, and
pharmacological validation. J Mol Model. 30:682024. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang H, Zhang X, Jia P, Zhang Y, Tang S,
Wang H, Li S, Yu X, Li Y and Zhang L: Metabolic profile of
phillyrin in rats obtained by UPLC-Q-TOF-MS. Biomed Chromatogr.
30:913–922. 2016. View Article : Google Scholar : PubMed/NCBI
|