1
|
Kerr KG and Snelling AM: Pseudomonas
aeruginosa: A formidable and ever-present adversary. J Hosp
Infect. 73:338–344. 2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Bjarnsholt T and Givskov M: Quorum-sensing
blockade as a strategy for enhancing host defences against
bacterial pathogens. Philos Trans R Soc Lond B Biol Sci.
362:1213–1222. 2007.PubMed/NCBI View Article : Google Scholar
|
3
|
Adonizio A, Kong KF and Mathee K:
Inhibition of quorum sensing-controlled virulence factor production
in Pseudomonas aeruginosa by South Florida plant extracts.
Antimicrob Agents Chemother. 52:198–203. 2008.PubMed/NCBI View Article : Google Scholar
|
4
|
De Kievit TR: Quorum sensing in
Pseudomonas aeruginosa biofilms. Environ Microbiol.
11:279–288. 2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Lee J and Zhang L: The hierarchy quorum
sensing network in Pseudomonas aeruginosa. Protein Cell.
6:26–41. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Pesci EC, Pearson JP, Seed PC and Iglewski
BH: Regulation of las and rhl quorum sensing in Pseudomonas
aeruginosa. J Bacteriol. 179:3127–3132. 1997.PubMed/NCBI View Article : Google Scholar
|
7
|
Mukherjee S, Moustafa D, Smith CD,
Goldberg JB and Bassler BL: The RhlR quorum-sensing receptor
controls Pseudomonas aeruginosa pathogenesis and biofilm
development independently of its canonical homoserine lactone
autoinducer. PLoS Pathog. 13(e1006504)2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Chimi LY, Bisso BN, Njateng GSS and Dzoyem
JP: Antibiotic-potentiating effect of some bioactive natural
products against planktonic cells9410609biofilms, and virulence
factors of Pseudomonas aeruginosa. Biomed Res Int.
2023(9410609)2023.PubMed/NCBI View Article : Google Scholar
|
9
|
Atanasov AG, Zotchev SB and Dirsch VM:
International Natural Product Sciences Taskforce. Supuran CT:
Natural products in drug discovery: Advances and opportunities. Nat
Rev Drug Discov. 20:200–216. 2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Hemaiswarya S, Kruthiventi AK and Doble M:
Synergism between natural products and antibiotics against
infectious diseases. Phytomedicine. 15:639–652. 2008.PubMed/NCBI View Article : Google Scholar
|
11
|
Bisso Ndezo B, Tokam Kuaté CR and Dzoyem
JP: Synergistic antibiofilm efficacy of thymol and piperine in
combination with three aminoglycoside antibiotics against
Klebsiella pneumoniae biofilms. Can J Infect Dis Med
Microbiol. 2021(7029944)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Guzzo F, Scognamiglio M, Fiorentino A,
Buommino E and D'Abrosca B: Plant derived natural products against
Pseudomonas aeruginosa and Staphylococcus aureus:
Antibiofilm activity and molecular mechanisms. Molecules.
25(5024)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Cowan MM: Plant products as antimicrobial
agents. Clin Microbiol Rev. 12:564–582. 1999.PubMed/NCBI View Article : Google Scholar
|
14
|
Ranasinghe RASN, Maduwanthi SDT and
Marapana RAUJ: Nutritional and health benefits of jackfruit
(Artocarpus heterophyllus Lam.): A review. Int J Food Sci.
2019(4327183)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Saha RK, Jamiruddin M and Acharya S:
Comparative analysis of lectins isolated from seed and testa of
Artocarpus heterophyllus LAM. Int J Curr Res Chem Pharma
Sci. 2:65–75. 2015.
|
16
|
Vazhacharickal JP, Sajeshkumar NK, Mathew
JJ, Kuriakose AC, Abraham B, Mathew RJ, Albin AN, Thomson D, Thomas
RS, Varghese N and Jose S: Chemistry and medicinal properties of
jackfruit (Artocarpus heterophyllus): A review on current
status of knowledge. Int J Innov Res Rev. 3:83–95. 2015.
|
17
|
Khan MR, Omoloso AD and Kihara M:
Antibacterial activity of Artocarpus heterophyllus.
Fitoterapia. 74:501–505. 2003.
|
18
|
Adan AA, Ojwang RA, Muge EK, Mwanza BK and
Nyaboga EN: Phytochemical composition and essential mineral
profile, antioxidant and antimicrobial potential of unutilized
parts of jackfruit. Food Res. 4:1125–1134. 2020.
|
19
|
Loizzo MR, Tundis R, Chandrika UG,
Abeysekera AM, Menichini F and Frega NG: Antioxidant and
antibacterial activities on foodborne pathogens of Artocarpus
heterophyllus Lam. (moraceae) leaves extracts. J Food Sci.
75:M291–M295. 2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Jagtap UB and Bapat VA: Green synthesis of
silver nanoparticles using Artocarpus heterophyllus Lam.
seed extract and its antibacterial activity. Ind Crops Prod.
46:132–137. 2013.
|
21
|
Sato M, Fujiwara S, Tsuchiya H, Fujii T,
Iinuma M, Tosa H and Ohkawa Y: Flavones with antibacterial activity
against cariogenic bacteria. J Ethnopharmacol. 54:171–176.
1996.PubMed/NCBI View Article : Google Scholar
|
22
|
Sun G, Zheng Z, Lee MH, Xu Y, Kang S, Dong
Z, Wang M, Gu Z, Li H and Chen W: Chemoprevention of colorectal
cancer by artocarpin, a dietary phytochemical from Artocarpus
heterophyllus. J Agric Food Chem. 65:3474–3480. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Wei BL, Weng JR, Chiu PH, Hung CF, Wang JP
and Lin CN: Antiinflammatory Flavonoids from Artocarpus
heterophyllus and Artocarpus communis. J Agric Food
Chem. 53:3867–3871. 2005.
|
24
|
Prakash O, Gupta R and Banarasi B:
Artocarpus heterophyllus (Jackfruit): An overview. Phcog
Rev. 6:353–358. 2017.
|
25
|
Fernando MR, Wickramasinghe S, Thabrew MI,
Ariyananda PL and Karunanayake EH: Effect of Artocarpus
heterophyllus and Asteracanthus longifolia on glucose
tolerance in normal human subjects and in maturity-onset diabetic
patients. J Ethnopharmacol. 31:277–282. 1991.PubMed/NCBI View Article : Google Scholar
|
26
|
Tulyathan V, Tananuwong K, Songjinda P and
Jaiboon N: Some physicochemical properties of jackfruit
(Artocarpus heterophyllus Lam) seed flour and starch. Sci
Asia. 28:37–41. 2002.
|
27
|
Pincus DH: Microbial identification using
the bioMérieux Vitek® 2 system. Encyclopedia of Rapid
Microbiological Methods. Bethesda, MD: Parenteral Drug Association,
pp1-32, 2006.
|
28
|
Holt JG and Krieg NR: Bergey's Manual of
Systematic Bacteriology. Vol 2. Williams and Wilkins Publishers,
Baltimore, 2001.
|
29
|
Ganesh PS, Veena K, Senthil R, Iswamy K,
Ponmalar EM, Mariappan V, Girija ASS, Vadivelu J, Nagarajan S,
Challabathula D and Shankar EM: Biofilm-associated agr and sar
quorum sensing systems of Staphylococcus aureus are
inhibited by 3-hydroxybenzoic acid derived from Illicium
verum. ACS Omega. 7:14653–14665. 2022.PubMed/NCBI View Article : Google Scholar
|
30
|
Hudzicki J: Kirby-bauer disk diffusion
susceptibility test protocol. American Society for Microbiology,
2009.
|
31
|
Packiavathy IASV, Agilandeswari P,
Musthafa KS, Karutha Pandian S and Veera Ravi A: Antibiofilm and
quorum sensing inhibitory potential of Cuminum cyminum and
its secondary metabolite methyl eugenol against Gram negative
bacterial pathogens. Food Res Int. 45:85–92. 2012.
|
32
|
Venkatramanan M, Sankar Ganesh P, Senthil
R, Akshay J, Veera Ravi A, Langeswaran K, Vadivelu J, Nagarajan S,
Rajendran K and Shankar EM: Inhibition of quorum sensing and
biofilm formation in Chromobacterium violaceum by fruit
extracts of Passiflora edulis. ACS Omega. 5:25605–25616.
2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Ganesh PS and Rai RV: Inhibition of
quorum-sensing-controlled virulence factors of Pseudomonas
aeruginosa by Murraya koenigii essential oil: a study in
a Caenorhabditis elegans infectious model. J Med Microbiol.
65:1528–1535. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Moehario LH, Tjoa E, Putranata H, Joon S,
Edbert D and Robertus T: Performance of TDR-300B and VITEK®2 for
the identification of Pseudomonas aeruginosa in comparison
with VITEK®-MS. J Int Med Res. 49(300060521989893)2021.PubMed/NCBI View Article : Google Scholar
|
35
|
CLSI. Performance standards for
antimicrobial susceptibility testing, M100. 32nd edition. Clinical
and Laboratory Standards Institute, Wayne, PA, 2022.
|
36
|
Pang Z, Raudonis R, Glick BR, Lin TJ and
Cheng Z: Antibiotic resistance in Pseudomonas aeruginosa:
Mechanisms and alternative therapeutic strategies. Biotechnol Adv.
37:177–192. 2019.
|
37
|
Alam K, Farraj DAA, Mah-E-Fatima S, Yameen
MA, Elshikh MS, Alkufeidy RM, Mustafa AEMA, Bhasme P, Alshammari
MK, Alkubaisi NA, et al: Anti-biofilm activity of plant derived
extracts against infectious pathogen-Pseudomonas aeruginosa
PAO1. J Infect Public Health. 13:1734–1741. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Sivagnanasundaram P and Karunanayake KOLC:
Phytochemical screening and antimicrobial activity of Artocarpus
heterophyllus and Artocarpus altilis leaf and stem bark
extracts. OUSL J. 9:1–17. 2015.
|
39
|
Daud NNNNM, Septama AW, Simbak N and Rahmi
EP: The phytochemical and pharmacological properties of artocarpin
from Artocarpus heterophyllus. Asian Pac J Trop Med. 13:1–7.
2020.
|
40
|
Vijayaraghavan K, Ahmad D and Ibrahim MKB:
Biohydrogen generation from jackfruit peel using anaerobic contact
filter. Int J Hydrogen Energy. 31:569–579. 2006.
|
41
|
Majik MS, Naik D, Bhat C, Tilve S, Tilvi S
and D'Souza L: Synthesis of (R)-norbgugaine and its potential as
quorum sensing inhibitor against Pseudomonas aeruginosa.
Bioorg Med Chem Lett. 23:2353–2356. 2013.PubMed/NCBI View Article : Google Scholar
|
42
|
Vijayakumar K and Ramanathan T: Musa
acuminata and its bioactive metabolite 5-hydroxymethylfurfural
mitigates quorum sensing (las and rhl) mediated biofilm and
virulence production of nosocomial pathogen Pseudomonas
aeruginosa in vitro. J Ethnopharmacol.
246(112242)2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Liu YP, Yu XM, Zhang W, Wang T, Jiang B,
Tang HX, Su QT and Fu YH: Prenylated chromones and flavonoids from
Artocarpus heterophyllus with their potential
antiproliferative and anti-inflammatory activities. Bioorg Chem.
101(104030)2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Biharee A, Sharma A, Kumar A and Jaitak V:
Antimicrobial flavonoids as a potential substitute for overcoming
antimicrobial resistance. Fitoterapia. 146(104720)2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Rashmi M, Meena H, Meena C, Kushveer JS,
Busi S, Murali A and Sarma VV: Anti-quorum sensing and antibiofilm
potential of Alternaria alternata, a foliar endophyte of
Carica papaya, evidenced by QS assays and in-silico analysis.
Fungal Biol. 122:998–1012. 2018.PubMed/NCBI View Article : Google Scholar
|