Unmasking vulnerabilities in the age of COVID‑19 (Review)
- Authors:
- Mohd Mustafa
- Kashif Abbas
- Rizwan Ahmad
- Waleem Ahmad
- Irfan Qadir Tantry
- Sidra Islam
- Moinuddin
- Mudassir Alam
- MD IMTAIYAZ HASSAN
- Nazura Usmani
- Safia Habib
-
Affiliations: Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India, Department of Medicine, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India, Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, Kashmir 190006, India, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA, Structural Biology Laboratory, Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India - Published online on: October 31, 2024 https://doi.org/10.3892/wasj.2024.290
- Article Number: 2
-
Copyright : © Mustafa et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Cheval S, Adamescu CM, Georgiadis T, Herrnegger M, Piticar A and Legates DR: Observed and potential impacts of the COVID-19 pandemic on the environment. Int J Environ Res Public Health. 17(4140)2020.PubMed/NCBI View Article : Google Scholar | |
Woolhouse ME, Adair K and Brierley L: RNA viruses: A case study of the biology of emerging infectious diseases. Microbiol Spectr. 1(10.1128/microbiolspec.OH-0001-2012)2013.PubMed/NCBI View Article : Google Scholar | |
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI and Katzourakis A: The evolution of SARS-CoV-2. Nat Rev Microbiol. 21:361–379. 2023.PubMed/NCBI View Article : Google Scholar | |
Chakraborty C, Chatterjee S, Bhattacharya M, Chopra H, Bhattacharya P, Islam MA and Dhama K: The D614G mutation helps to increase the transmissibility and reduce the virulence of SARS-CoV-2 variants through natural selection. Int J Surg. 109:171–174. 2023.PubMed/NCBI View Article : Google Scholar | |
Lythgoe KA, Hall M, Ferretti L, de Cesare M, MacIntyre-Cockett G, Trebes A, Andersson M, Otecko N, Wise EL, Moore N, et al: SARS-CoV-2 within-host diversity and transmission. Science. 372(eabg0821)2021.PubMed/NCBI View Article : Google Scholar | |
Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, Kaewpom T, Chia WN, Ampoot W, Lim BL, et al: Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun. 12(972)2021.PubMed/NCBI View Article : Google Scholar | |
She J, Jiang J, Ye L, Hu L, Bai C and Song Y: 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin Transl Med. 9(19)2020.PubMed/NCBI View Article : Google Scholar | |
Hu B, Guo H, Zhou P and Shi ZL: Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 19:141–154. 2021.PubMed/NCBI View Article : Google Scholar | |
Worobey M, Levy JI, Malpica Serrano L, Crits-Christoph A, Pekar JE, Goldstein SA, Rasmussen AL, Kraemer MUG, Newman C, Koopmans MPG, et al: The huanan seafood wholesale market in Wuhan was the early epicenter of the COVID-19 pandemic. Science. 377:951–959. 2022.PubMed/NCBI View Article : Google Scholar | |
Reis J, Le Faou A, Buguet A, Sandner G and Spencer P: Covid-19: Early cases and disease spread. Ann Glob Health. 88(83)2022.PubMed/NCBI View Article : Google Scholar | |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020.PubMed/NCBI View Article : Google Scholar | |
Gralinski LE and Menachery VD: Return of the coronavirus: 2019-nCoV. Viruses. 12(135)2020.PubMed/NCBI View Article : Google Scholar | |
Eurosurveillance Editorial Team. Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. Euro Surveill. 25(200131e)2020.PubMed/NCBI View Article : Google Scholar | |
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 5:536–544. 2020.PubMed/NCBI View Article : Google Scholar | |
Zanin M, Xiao C, Liang T, Ling S, Zhao F, Huang Z, Lin F, Lin X, Jiang Z and Wong SS: The public health response to the COVID-19 outbreak in mainland China: A narrative review. J Thorac Dis. 12:4434–4449. 2020.PubMed/NCBI View Article : Google Scholar | |
Deng SQ and Peng HJ: Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J Clin Med. 9(575)2020.PubMed/NCBI View Article : Google Scholar | |
World Health Organization: Coronavirus disease 2019 (COVID-19). Situation report-51, 2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10. | |
Deslandes A, Berti V, Tandjaoui-Lambotte Y, Alloui C, Carbonnelle E, Zahar JR, Brichler S and Cohen Y: SARS-CoV-2 was already spreading in France in late December 2019. Int J Antimicrob Agents. 55(106006)2020.PubMed/NCBI View Article : Google Scholar | |
Pal M, Berhanu G, Desalegn C and Kandi V: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus. 12(e7423)2020.PubMed/NCBI View Article : Google Scholar | |
Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, et al: Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 382:1564–1567. 2020.PubMed/NCBI View Article : Google Scholar | |
Aboubakr HA, Sharafeldin TA and Goyal SM: Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis. 68:296–312. 2021.PubMed/NCBI View Article : Google Scholar | |
Kasloff SB, Leung A, Strong JE, Funk D and Cutts T: Stability of SARS-CoV-2 on critical personal protective equipment. Sci Rep. 11(984)2021.PubMed/NCBI View Article : Google Scholar | |
Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG and Lessler J: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 172:577–582. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Kang L, Guo Z, Liu J, Liu M and Liang W: Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: A systematic review and meta-analysis. JAMA Netw Open. 5(e2228008)2022.PubMed/NCBI View Article : Google Scholar | |
Huang SW and Wang SF: SARS-CoV-2 entry related viral and host genetic variations: Implications on COVID-19 severity, immune escape, and infectivity. Int J Mol Sci. 22(3060)2021.PubMed/NCBI View Article : Google Scholar | |
Men K, Li Y, Wang X, Zhang G, Hu J, Gao Y, Han A, Liu W and Han H: Estimate the incubation period of coronavirus 2019 (COVID-19). Comput Biol Med. 158(106794)2023.PubMed/NCBI View Article : Google Scholar | |
Batra A, Clark JR, Kang AK, Ali S, Patel TR, Shlobin NA, Hoffman SC, Lim PH, Orban ZS, Visvabharathy L, et al: Persistent viral RNA shedding of SARS-CoV-2 is associated with delirium incidence and six-month mortality in hospitalized COVID-19 patients. Geroscience. 44:1241–1254. 2022.PubMed/NCBI View Article : Google Scholar | |
Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, Rambaut A and Robertson DL: Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 5:1408–1417. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al: A new coronavirus associated with human respiratory disease in China. Nature. 579:265–269. 2020.PubMed/NCBI View Article : Google Scholar | |
He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y, Xia L, Zhou J, Zhen W, Feng Y, et al: Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol. 88:7070–7082. 2014.PubMed/NCBI View Article : Google Scholar | |
Zheng J: SARS-CoV-2: An emerging coronavirus that causes a global threat. Int J Biol Sci. 16:1678–1685. 2020.PubMed/NCBI View Article : Google Scholar | |
Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, Douangboubpha B, Karami Y, Chrétien D, Sanamxay D, et al: Author Correction: Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 607(E19)2022.PubMed/NCBI View Article : Google Scholar | |
Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, et al: A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol. 30:2196–2203.e3. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhou H, Ji J, Chen X, Bi Y, Li J, Wang Q, Hu T, Song H, Zhao R, Chen Y, et al: Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell. 184:4380–4391. 2021.PubMed/NCBI View Article : Google Scholar | |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang H, Li X, Li T, Zhang S, Wang L, Wu X and Liu J: The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis. 39:1629–1635. 2020.PubMed/NCBI View Article : Google Scholar | |
Nie J, Li Q, Zhang L, Cao Y, Zhang Y, Li T, Wu J, Liu S, Zhang M, Zhao C, et al: Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discov. 7(21)2021.PubMed/NCBI View Article : Google Scholar | |
Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, Lu X, Zhang Y, Ma L, Gu W, et al: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 17:621–630. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Qiao S, Yu J, Zeng J, Shan S, Tian L, Lan J, Zhang L and Wang X: Bat and pangolin coronavirus spike glycoprotein structures provide insights into SARS-CoV-2 evolution. Nat Commun. 12(1607)2021.PubMed/NCBI View Article : Google Scholar | |
Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK, Rodriguez-Morales AJ, de la Fuente J, Michalak I and Attia YA: SARS-CoV-2 in animals: Potential for unknown reservoir hosts and public health implications. Vet Q. 41:181–201. 2021.PubMed/NCBI View Article : Google Scholar | |
Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK and Rodriguez-Morales AJ: Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 33:e00028–20. 2020.PubMed/NCBI View Article : Google Scholar | |
De Wit E, Van Doremalen N, Falzarano D and Munster VJ: SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol. 14:523–534. 2016.PubMed/NCBI View Article : Google Scholar | |
Cui J, Li F and Shi ZL: Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 17:181–192. 2019.PubMed/NCBI View Article : Google Scholar | |
Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol. 94:e00127–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Banerjee A, Doxey AC, Mossman K and Irving AT: Unraveling the zoonotic origin and transmission of SARS-CoV-2. Trends Ecol Evol. 36:180–184. 2021.PubMed/NCBI View Article : Google Scholar | |
Focosi D and Maggi F: Recombination in coronaviruses, with a focus on SARS-CoV-2. Viruses. 14(1239)2022.PubMed/NCBI View Article : Google Scholar | |
Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, et al: Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 368:1016–1020. 2020.PubMed/NCBI View Article : Google Scholar | |
Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, et al: SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill. 25(2001005)2020.PubMed/NCBI View Article : Google Scholar | |
Sit TH, Brackman CJ, Ip SM, Tam KWS, Law PYT, To EMW, Yu VYT, Sims LD, Tsang DNC, Chu DKW, et al: Canine SARS-CoV-2 infection. Nature. 586:776–778. 2020. | |
Zhang Q, Zhang H, Gao J, Huang K, Yang Y, Hui X, He X, Li C, Gong W, Zhang Y, et al: A serological survey of SARS-CoV-2 in cats in Wuhan. Emerg Microbes Infect. 9:2013–2019. 2020.PubMed/NCBI View Article : Google Scholar | |
Fehr AR and Perlman S: Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 1282:1–23. 2015.PubMed/NCBI View Article : Google Scholar | |
Mohan SV, Hemalatha M, Kopperi H, Ranjith I and Kumar AK: SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chem Eng J. 405(126893)2021.PubMed/NCBI View Article : Google Scholar | |
Liu DX, Liang JQ and Fung TS: Human coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encyclopedia Virol. (428)2021. | |
Wen C, Sun L, Zhao MC, Duan SX, Wang L and Cui XW: Clinical study of human coronavirus NL63, OC43, 229E, HKU1 infections in hospitalized children from 2015 to 2020. Infect Drug Resist. 15:1093–1101. 2022.PubMed/NCBI View Article : Google Scholar | |
Rastogi M, Pandey N, Shukla A and Singh SK: SARS coronavirus 2: From genome to infectome. Respir Res. 21:318. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhu Z, Lian X, Su X, Wu W, Marraro GA and Zeng Y: From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 21(224)2020.PubMed/NCBI View Article : Google Scholar | |
Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, et al: Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 251:228–248. 2020.PubMed/NCBI View Article : Google Scholar | |
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB and Oudit GY: Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 126:1456–1474. 2020.PubMed/NCBI View Article : Google Scholar | |
Petrosillo N, Viceconte G, Ergonul O, Ippolito G and Petersen E: COVID-19, SARS and MERS: Are they closely related? Clin Microbiol Infect. 26:729–734. 2020.PubMed/NCBI View Article : Google Scholar | |
Xiao J, Fang M, Chen Q and He B: SARS, MERS and COVID-19 among healthcare workers: A narrative review. J Infect Public Health. 13:843–848. 2020.PubMed/NCBI View Article : Google Scholar | |
Bharati S, Podder P, Mondal MR, Podder P and Kose U: A review on epidemiology, genomic characteristics, spread, and treatments of COVID-19. Data Sci COVID-19. 487–505. 2022. | |
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R and Rambaut A: COVID-19 Genomics UK (COG-UK) Consortium et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 19:409–424. 2021.PubMed/NCBI View Article : Google Scholar | |
Marjanovic S, Romanelli RJ, Ali GC, Leach B, Bonsu M, Rodriguez-Rincon D and Ling T: COVID-19 Genomics UK (COG-UK) Consortium: Final Report. Rand Health Q. 9(24)2022.PubMed/NCBI | |
Khetran SR and Mustafa R: Mutations of SARS-CoV-2 structural proteins in the alpha, beta, gamma, and delta variants: Bioinformatics analysis. JMIR Bioinform Biotechnol. 4(e43906)2023.PubMed/NCBI View Article : Google Scholar | |
European Centre for Disease Prevention and Control: Threat Assessment Brief: Rapid increase of a SARS-CoV-2 variant with multiple spike protein mutations observed in the United Kingdom. https://www.ecdc.europa.eu/sites/default/files/documents/SARS-CoV-2-variant-multiple-spike-protein-mutations-United-Kingdom.pdf. | |
Mahmoud IS, Jarrar YB, Alshaer W and Ismail S: SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie. 175:93–98. 2020.PubMed/NCBI View Article : Google Scholar | |
Xie Y, Karki CB, Du D, Li H, Wang J, Sobitan A, Teng S, Tang Q and Li L: Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2. Front Mol Biosci. 7(591873)2020.PubMed/NCBI View Article : Google Scholar | |
Zamorano Cuervo N and Grandvaux N: ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife. 9(e61390)2020.PubMed/NCBI View Article : Google Scholar | |
Wu J, Deng W, Li S and Yang X: Advances in research on ACE2 as a receptor for 2019-CoV. Cell Mol Life Sci. 78:531–544. 2021.PubMed/NCBI View Article : Google Scholar | |
Alipoor SD and Mirsaeidi M: SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep. 49:10715–10727. 2022.PubMed/NCBI View Article : Google Scholar | |
Guo H, Li A, Dong TY, Si HR, Hu B, Li B, Zhu Y, Shi ZL and Letko M: Isolation of ACE2-dependent and -independent sarbecoviruses from Chinese horseshoe bats. J Virol. 97(e0039523)2023.PubMed/NCBI View Article : Google Scholar | |
Shereen MA, Khan S, Kazmi A, Bashir N and Siddique R: COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res. 24:91–98. 2020.PubMed/NCBI View Article : Google Scholar | |
Najafi N, Davoudi A, Izadyar H, Alishahi A, Mokhtariani A, Soleimanpourian B, Tabarrayi M, Moosazadeh M, Daftarian Z and Ahangarkani F: The effect of ACE inhibitors and ARBs on outcomes in hospitalized patients with COVID-19. Ir J Med Sci. 192:1517–1523. 2023.PubMed/NCBI View Article : Google Scholar | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu K, Tan S, Niu S, Wang J, Wu L, Sun H, Zhang Y, Pan X, Qu X, Du P, et al: Cross-species recognition of SARS-CoV-2 to bat ACE2. Proc Natl Acad Sci USA. 118(e2020216118)2021.PubMed/NCBI View Article : Google Scholar | |
Wettstein L, Kirchhoff F and Münch J: The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci. 23(1351)2022.PubMed/NCBI View Article : Google Scholar | |
Guang C, Phillips RD, Jiang B and Milani F: Three key proteases-angiotensin-I-converting enzyme (ACE), ACE2 and renin-within and beyond the renin-angiotensin system. Arch Cardiovasc Dis. 105:373–385. 2012.PubMed/NCBI View Article : Google Scholar | |
Kucukoglu K, Faydalı N and Bul D: What are the drugs having potential against COVID-19? Med Chem Res. 29:1935–1955. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee JS, Goldstein JM, Moon JL, Herzegh O, Bagarozzi DA Jr, Oberste MS, Hughes H, Bedi K, Gerard D, Cameron B, et al: Analysis of the initial lot of the CDC 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. PLoS One. 16(e0260487)2021.PubMed/NCBI View Article : Google Scholar | |
Sheikhzadeh E, Eissa S, Ismail A and Zourob M: Diagnostic techniques for COVID-19 and new developments. Talanta. 220(121392)2020.PubMed/NCBI View Article : Google Scholar | |
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB and Chan WCW: Diagnosing COVID-19: The disease and tools for detection. ACS Nano. 14:3822–3535. 2020.PubMed/NCBI View Article : Google Scholar | |
Xie X, Zhong Z, Zhao W, Zheng C, Wang F and Liu J: Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing. Radiology. 296:E41–E45. 2020.PubMed/NCBI View Article : Google Scholar | |
Kanne JP: Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist. Radiology. 295:16–17. 2020.PubMed/NCBI View Article : Google Scholar | |
Machado BA, Hodel KV, Barbosa-Junior VG, Soares MB and Badaro R: The main molecular and serological methods for diagnosing COVID-19: An overview based on the literature. Viruses. 13(40)2020.PubMed/NCBI View Article : Google Scholar | |
Liu YX, Zhou YH, Jiang CH, Liu J and Chen DQ: Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Bioengineered. 13:5480–5508. 2022.PubMed/NCBI View Article : Google Scholar | |
Shuster A, Pechalrieu D, Jackson CB, Abegg D, Choe H and Adibekian A: Clinical antiviral drug arbidol inhibits infection by SARS-CoV-2 and variants through direct binding to the spike protein. ACS Chem Biol. 16:2845–2851. 2021.PubMed/NCBI View Article : Google Scholar | |
Kang CK, Seong MW, Choi SJ, Kim TS, Choe PG, Song SH, Kim NJ, Park WB and Oh MD: In vitro activity of lopinavir/ritonavir and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 at concentrations achievable by usual doses. Korean J Intern Med. 35(728)2020.PubMed/NCBI View Article : Google Scholar | |
RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomized, controlled, open-label, platform trial. Lancet. 396:1345–1352. 2020.PubMed/NCBI View Article : Google Scholar | |
Nutho B, Mahalapbutr P, Hengphasatporn K, Pattaranggoon NC, Simanon N, Shigeta Y, Hannongbua S and Rungrotmongkol T: Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry. 59:1769–1779. 2020.PubMed/NCBI View Article : Google Scholar | |
Lian N, Xie H, Lin S, Huang J, Zhao J and Lin Q: Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin Microbiol Infect. 26:917–921. 2020.PubMed/NCBI View Article : Google Scholar | |
Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, Mo X, Wang J, Wang Y, Peng P, et al: Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: An exploratory randomized controlled trial. Med. 1:105–113. 2020.PubMed/NCBI View Article : Google Scholar | |
Djomkam ALZ, Olwal CO, Sala TB and Paemka L: Commentary: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Front Oncol. 10(1448)2020.PubMed/NCBI View Article : Google Scholar | |
Li K, Meyerholz DK, Bartlett JA and McCray PB Jr: The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. mBio. 12(e0097021)2021.PubMed/NCBI View Article : Google Scholar | |
Chitsike L and Duerksen-Hughes P: Keep out! SARS-CoV-2 entry inhibitors: Their role and utility as COVID-19 therapeutics. Virol J. 18(154)2021.PubMed/NCBI View Article : Google Scholar | |
Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, Søgaard OS, Hasselstrøm JB, Winkler M, Hempel T, et al: Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 65(103255)2021.PubMed/NCBI View Article : Google Scholar | |
Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, Wu Y, Xiao W, Liu S, Chen E, et al: Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ. 369(m1849)2020.PubMed/NCBI View Article : Google Scholar | |
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, et al: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 56(105949)2020.PubMed/NCBI View Article : Google Scholar | |
Manivannan E, Karthikeyan C, Moorthy NSHN and Chaturvedi SC: The rise and fall of Chloroquine/Hydroxychloroquine as compassionate therapy of COVID-19. Front Pharmacol. 12(584940)2021.PubMed/NCBI View Article : Google Scholar | |
Kumar S, Dutta D, Ravichandiran V and Sukla S: Monoclonal antibodies: A remedial approach to prevent SARS-CoV-2 infection. 3 Biotech. 12(227)2022.PubMed/NCBI View Article : Google Scholar | |
Javalkote VS, Kancharla N, Bhadra B, Shukla M, Soni B, Sapre A, Goodin M, Bandyopadhyay A and Dasgupta S: CRISPR-based assays for rapid detection of SARS-CoV-2. Methods. 203:594–603. 2022.PubMed/NCBI View Article : Google Scholar | |
Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MW, Kim NG, Yu X, Li J, Walker BD, et al: Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv [Preprint]: May 8, 2020 doi: 10.1101/2020.05.04.20091231. | |
Yang SM, Lv S, Zhang W and Cui Y: Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges. Sensors (Basel). 22(1620)2022.PubMed/NCBI View Article : Google Scholar | |
Rizvi ZA, Babele P, Madan U, Sadhu S, Tripathy MR, Goswami S, Mani S, Dikshit M and Awasthi A: Pharmacological potential of Withania somnifera (L.) Dunal and Tinospora cordifolia (Willd.) Miers on the experimental models of COVID-19, T cell differentiation, and neutrophil functions. Front Immunol. 14(1138215)2023.PubMed/NCBI View Article : Google Scholar | |
Amponsah SK, Tagoe B, Adams I and Bugyei KA: Efficacy and safety profile of corticosteroids and non-steroidal anti-inflammatory drugs in COVID-19 management: A narrative review. Front Pharmacol. 13(1063246)2022.PubMed/NCBI View Article : Google Scholar | |
Falk JA, Minai OA and Mosenifar Z: Inhaled and systemic corticosteroids in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 5:506–512. 2008.PubMed/NCBI View Article : Google Scholar | |
Kushner P, McCarberg BH, Grange L, Kolosov A, Haveric AL, Zucal V, Petruschke R and Bissonnette S: The use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19. NPJ Prim Care Respir Med. 32(35)2022.PubMed/NCBI View Article : Google Scholar | |
Robb CT, Goepp M, Rossi AG and Yao C: Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol. 177:4899–4920. 2020.PubMed/NCBI View Article : Google Scholar | |
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, et al: Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19. Allergy. 77:2337–2354. 2022.PubMed/NCBI View Article : Google Scholar | |
Kanchanasurakit S, Arsu A, Siriplabpla W, Duangjai A and Saokaew S: Acetaminophen use and risk of renal impairment: A systematic review and meta-analysis. Kidney Res Clin Pract. 39(81)2020.PubMed/NCBI View Article : Google Scholar | |
De Spiegeleer A, Bronselaer A, Teo JT, Byttebier G, De Tré G, Belmans L, Dobson R, Wynendaele E, Van De Wiele C, Vandaele F, et al: The effects of ARBs, ACEis, and statins on clinical outcomes of COVID-19 infection among nursing home residents. J Am Med Dir Assoc. 21:909–914.e2. 2020.PubMed/NCBI View Article : Google Scholar | |
Geng S, Mei Q, Zhu C, Yang T, Yang Y, Fang X and Pan A: High flow nasal cannula is a good treatment option for COVID-19. Heart Lung. 49:444–445. 2020.PubMed/NCBI View Article : Google Scholar | |
Lockhart SL, Duggan LV, Wax RS, Saad S and Grocott HP: Personal protective equipment (PPE) for both anesthesiologists and other airway managers: Principles and practice during the COVID-19 pandemic. Can J Anaesth. 67:1005–1015. 2020.PubMed/NCBI View Article : Google Scholar | |
Gilardi KVK and Mazet JAK: The United States Agency for international development emerging pandemic threats PREDICT project-global detection of emerging wildlife viral zoonoses. Fowler's Zoo Wild Animal Med Curr Ther. 9:110–116. 2019. | |
Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G and Lee SS: The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: Lessons learned from major clinical studies. Front Pharmacol. 12(704205)2021.PubMed/NCBI View Article : Google Scholar | |
Okuyama R: mRNA and adenoviral vector vaccine platforms utilized in COVID-19 vaccines: Technologies, ecosystem, and future directions. Vaccines (Basel). 11(1737)2023.PubMed/NCBI View Article : Google Scholar | |
Wang N, Chen M and Wang T: Liposomes used as a vaccine Adjuvant-delivery system: From basics to clinical immunization. J Control Release. 303:130–150. 2019.PubMed/NCBI View Article : Google Scholar | |
Tretiakova DS and Vodovozova EL: Liposomes as adjuvants and vaccine delivery systems. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 16:1–20. 2022.PubMed/NCBI View Article : Google Scholar | |
Petkar KC, Patil SM, Chavhan SS, Kaneko K, Sawant KK, Kunda NK and Saleem IY: An overview of Nanocarrier-based adjuvants for vaccine delivery. Pharmaceutics. 13(455)2021.PubMed/NCBI View Article : Google Scholar | |
Karunakaran B, Gupta R, Patel P, Salave S, Sharma A, Desai D, Benival D and Kommineni N: Emerging trends in lipid-based vaccine delivery: A special focus on developmental strategies, fabrication methods, and applications. Vaccines (Basel). 11(661)2023.PubMed/NCBI View Article : Google Scholar | |
Ali H, Akbar M, Iqbal B, Ali F, Sharma NK, Kumar N, Najmi A, Albratty M, Alhazmi HA, Madkhali OA, et al: Virosome: An engineered virus for vaccine delivery. Saudi Pharm J. 31:752–764. 2023.PubMed/NCBI View Article : Google Scholar | |
Nakanishi T, Hayashi A, Kunisawa J, Tsutsumi Y, Tanaka K, Yashiro-Ohtani Y, Nakanishi M, Fujiwara H, Hamaoka T and Mayumi T: Fusogenic liposomes efficiently deliver exogenous antigen through the cytoplasm into the MHC class I processing pathway. Eur J Immunol. 30:1740–1747. 2000.PubMed/NCBI View Article : Google Scholar | |
Marchese AM, Zhou X, Kinol J, Underwood E, Woo W, McGarry A, Beyhaghi H, Áñez G, Toback S and Dunkle LM: NVX-CoV2373 vaccine efficacy against hospitalization: A post hoc analysis of the PREVENT-19 phase 3, randomized, placebo-controlled trial. Vaccine. 41:3461–3466. 2023.PubMed/NCBI View Article : Google Scholar | |
Frederiksen LSF, Zhang Y, Foged C and Thakur A: The long road toward COVID-19 herd immunity: Vaccine platform technologies and mass immunization strategies. Front Immunol. 11(1817)2020.PubMed/NCBI View Article : Google Scholar | |
Sanders B, Koldijk M and Schuitemaker H: Inactivated viral vaccines. Vaccine Analysis: Strategies Principles Control: 45-80, 2014 doi: 10.1007/978-3-662-45024-6_2. | |
Wang C, Chen LY, Lu QB and Cui F: Vaccination with the inactivated vaccine (Sinopharm BBIBP-CorV) ensures protection against SARS-CoV-2 related disease. Vaccines (Basel). 10(920)2022.PubMed/NCBI View Article : Google Scholar | |
Hu L, Sun J, Wang Y, Tan D, Cao Z, Gao L, Guan Y, Jia X and Mao J: A review of inactivated COVID-19 vaccine development in China: Focusing on safety and efficacy in special populations. Vaccines (Basel). 11(1045)2023.PubMed/NCBI View Article : Google Scholar | |
Soysal A, Gönüllü E, Karabayır N, Alan S, Atıcı S, Yıldız İ, Engin H, Çivilibal M and Karaböcüoğlu M: Comparison of immunogenicity and reactogenicity of inactivated SARS-CoV-2 vaccine (CoronaVac) in previously SARS-CoV-2 infected and uninfected health care workers. Hum Vaccin Immunother. 17:3876–3880. 2021.PubMed/NCBI View Article : Google Scholar | |
Pagliusi S, Jarrett S, Hayman B, Kreysa U, Prasad SD, Reers M, Hong Thai P, Wu K, Zhang YT, Baek YO, et al: Emerging manufacturers engagements in the COVID-19 vaccine research, development and supply. Vaccine. 38:5418–5423. 2020.PubMed/NCBI View Article : Google Scholar | |
Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M and Mayhew S: The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 19:305–306. 2020.PubMed/NCBI View Article : Google Scholar | |
Chaplin DD: Overview of the immune response. J Allergy Clin Immunol. 125 (2 Suppl 2):S3–S23. 2010.PubMed/NCBI View Article : Google Scholar | |
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A and Jesawadawala M: Adenoviral vector-based vaccine platform for COVID-19: Current status. Vaccines (Basel). 11(432)2023.PubMed/NCBI View Article : Google Scholar | |
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S and Mittal SK: Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology. 10(e1345)2021.PubMed/NCBI View Article : Google Scholar | |
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ, et al: Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 396:479–488. 2020.PubMed/NCBI View Article : Google Scholar | |
Joe CCD, Jiang J, Linke T, Li Y, Fedosyuk S, Gupta G, Berg A, Segireddy RR, Mainwaring D, Joshi A, et al: Manufacturing a chimpanzee adenovirus-vectored SARS-CoV-2 vaccine to meet global needs. Biotechnol Bioeng. 119:48–58. 2022.PubMed/NCBI View Article : Google Scholar | |
Asano M, Okada H, Itoh Y, Hirata H, Ishikawa K, Yoshida E, Matsui A, Kelly EJ, Shoemaker K, Olsson U and Vekemans J: Immunogenicity and safety of AZD1222 (ChAdOx1 nCoV-19) against SARS-CoV-2 in Japan: A double-blind, randomized controlled phase 1/2 trial. Int J Infect Dis. 114:165–174. 2022.PubMed/NCBI View Article : Google Scholar | |
AstraZeneca: AZD1222 US Phase III primary analysis confirms safety and efficacy. AstraZeneca, 2021. Available at: https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2021/azd1222-us-phase-iii-primary-analysis-confirms-safety-and-efficacy.html. | |
Khan KH: DNA vaccines: Roles against diseases. Germs. 3:26–35. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao G, Zhang Z, Ding Y, Hou J, Liu Y, Zhang M, Sui C, Wang L, Xu X, Gao X and Kou Z: A DNA vaccine encoding the full-length spike protein of beta variant (B.1.351) elicited broader cross-reactive immune responses against other SARS-CoV-2 variants. Vaccines (Basel). 11(513)2023.PubMed/NCBI View Article : Google Scholar | |
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L and Koradia K: mRNA-Based vaccine for COVID-19: They are new but not unknown! Vaccines (Basel). 11(507)2023.PubMed/NCBI View Article : Google Scholar | |
Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y and Huang Y: mRNA vaccines for COVID-19 and diverse diseases. J Control Release. 345:314–333. 2022.PubMed/NCBI View Article : Google Scholar | |
Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP and Götte M: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 295:6785–6797. 2020.PubMed/NCBI View Article : Google Scholar | |
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML and Lescure FX: Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 382:2327–2336. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, Chen S, Zhang Y, Chen B, Lu M, et al: Favipiravir versus arbidol for clinical recovery rate in moderate and severe adult COVID-19 Patients: A prospective, multicenter, open-label, randomized controlled clinical trial. Front Pharmacol. 12(683296)2021.PubMed/NCBI View Article : Google Scholar | |
Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, Patil S and Barkate H: Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 102:501–508. 2021.PubMed/NCBI View Article : Google Scholar | |
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C and Chen ZS: Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther. 216(107672)2020.PubMed/NCBI View Article : Google Scholar | |
Mallat J, Hamed F, Balkis M, Mohamed MA, Mooty M, Malik A, Nusair A and Bonilla MF: Hydroxychloroquine is associated with slower viral clearance in clinical COVID-19 patients with mild to moderate disease. Medicine (Baltimore). 99(e23720)2020.PubMed/NCBI View Article : Google Scholar | |
Yang G, Tan Z, Zhou L, Yang M, Peng L, Liu J, Cai J, Yang R, Han J, Huang Y and He S: Effects of Angiotensin II receptor blockers and ACE (Angiotensin-Converting Enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: A single-center retrospective study. Hypertension. 76:51–58. 2020.PubMed/NCBI View Article : Google Scholar | |
Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S and Hall MD: Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci. 6:672–683. 2020.PubMed/NCBI View Article : Google Scholar | |
Uzunova K, Filipova E, Pavlova V and Vekov T: Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother. 131(110668)2020.PubMed/NCBI View Article : Google Scholar | |
Bahsoun A, Fakih Y, Zareef R, Bitar F and Arabi M: Corticosteroids in COVID-19: Pros and cons. Front Med (Lausanne). 10(1202504)2023.PubMed/NCBI View Article : Google Scholar | |
Venditto VJ, Haydar D, Abdel-Latif A, Gensel JC, Anstead MI, Pitts MG, Creameans J, Kopper TJ, Peng C and Feola DJ: Immunomodulatory effects of azithromycin revisited: Potential applications to COVID-19. Front Immunol. 12(574425)2021.PubMed/NCBI View Article : Google Scholar | |
Peng HT, Rhind SG and Beckett A: Convalescent plasma for the prevention and treatment of COVID-19: A systematic review and quantitative analysis. JMIR Public Health Surveill. 7(e25500)2021.PubMed/NCBI View Article : Google Scholar | |
Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, Padya BS, Fernandes G, Mutalik S and Prassl R: Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci. 256(117883)2020.PubMed/NCBI View Article : Google Scholar | |
Aiyegbusi OL, Hughes SE, Turner G, Rivera SC, McMullan C, Chandan JS, Haroon S, Price G, Davies EH, Nirantharakumar K, et al: Symptoms, complications and management of long COVID: A review. J R Soc Med. 114:428–442. 2021.PubMed/NCBI View Article : Google Scholar | |
Hosseinzadeh P, Zareipour M, Baljani E and Moradali MR: Social consequences of the COVID-19 pandemic. A systematic review. Invest Educ Enferm. 40(e10)2022.PubMed/NCBI View Article : Google Scholar | |
Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y and Jit M: Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet. 397:1023–1034. 2021.PubMed/NCBI View Article : Google Scholar | |
McNeely JA: Nature and COVID-19: The pandemic, the environment, and the way ahead. Ambio. 50:767–781. 2021.PubMed/NCBI View Article : Google Scholar | |
Keusch GT, Amuasi JH, Anderson DE, Daszak P, Eckerle I, Field H, Koopmans M, Lam SK, Das Neves CG, Peiris M, et al: Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on SARS-CoV-2 and other RNA viruses. Proc Natl Acad Sci USA. 119(e2202871119)2022.PubMed/NCBI View Article : Google Scholar | |
Morens DM, Taubenberger JK and Fauci AS: Universal coronavirus vaccines-an urgent need. N Engl J Med. 386:297–299. 2022.PubMed/NCBI View Article : Google Scholar | |
Loh EH, Zambrana-Torrelio C, Olival KJ, Bogich TL, Johnson CK, Mazet JA, Karesh W and Daszak P: Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 15:432–437. 2015.PubMed/NCBI View Article : Google Scholar | |
Pike J, Bogich T, Elwood S, Finnoff DC and Daszak P: Economic optimization of a global strategy to address the pandemic threat. Proc Natl Acad Sci USA. 111:18519–18523. 2014.PubMed/NCBI View Article : Google Scholar | |
AlShurman BA, Khan AF, Mac C, Majeed M and Butt ZA: What demographic, social, and contextual factors influence the intention to use COVID-19 vaccines: A scoping review. Int J Environ Res Public Health. 18(9342)2021.PubMed/NCBI View Article : Google Scholar | |
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, et al: Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 7(CD013705)2022.PubMed/NCBI View Article : Google Scholar | |
Malekzadeh R, Abedi G, Ziapour A, Yıldırım M and Amirkhanlou A: Analysis of ethical considerations of COVID-19 vaccination: Lessons for future. BMC Med Ethics. 24(91)2023.PubMed/NCBI View Article : Google Scholar | |
Jalilian H, Amraei M, Javanshir E, Jamebozorgi K and Faraji-Khiavi F: Ethical considerations of the vaccine development process and vaccination: A scoping review. BMC Health Serv Res. 23(255)2023.PubMed/NCBI View Article : Google Scholar | |
Chung JY, Thone MN and Kwon YJ: COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev. 170:1–25. 2021.PubMed/NCBI View Article : Google Scholar | |
Forman R, Shah S, Jeurissen P, Jit M and Mossialos E: COVID-19 vaccine challenges: What have we learned so far and what remains to be done? Health Policy. 125:553–567. 2021.PubMed/NCBI View Article : Google Scholar |