1
|
Nabel EG and Braunwald E: A tale of
coronary artery disease and myocardial infarction. N Engl J Med.
366:54–63. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Daniels L, Bell JR, Delbridge LM, McDonald
FJ, Lamberts RR and Erickson JR: The role of CaMKII in diabetic
heart dysfunction. Heart Fail Rev. 20:589–600. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mathers CD and Loncar D: Projections of
global mortality and burden of disease from 2002 to 2030. PLoS Med.
3:e4422006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Joseph SM, Cedars AM, Ewald GA, Geltman EM
and Mann DL: Acute decompensated heart failure: Contemporary
medical management. Tex Heart Inst J. 36:510–520. 2009.PubMed/NCBI
|
5
|
McMurray JJ, Adamopoulos S, Anker SD,
Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C,
Gomez-Sanchez MA, et al: ESC Committee for Practice Guidelines: Esc
guidelines for the diagnosis and treatment of acute and chronic
heart failure 2012: The task force for the diagnosis and treatment
of acute and chronic heart failure 2012 of the European Society of
Cardiology. Developed in collaboration with the heart failure
association (hfa) of the esc. Eur Heart J. 33:1787–1847. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hill JA and Olson EN: Cardiac plasticity.
N Engl J Med. 358:1370–1380. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bers DM: Cardiac sarcoplasmic reticulum
calcium leak: Basis and roles in cardiac dysfunction. Annu Rev
Physiol. 76:107–127. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cho GW, Altamirano F and Hill JA: Chronic
heart failure: Ca(2+), catabolism, and catastrophic cell death.
Biochim Biophys Acta. 1862:763–777. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
van Oort RJ, Brown JH and Westenbrink BD:
CaMKII confirms its promise in ischaemic heart disease. Eur J Heart
Fail. 16:1268–1269. 2014. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Grandi E, Edwards AG, Herren AW and Bers
DM: CaMKII comes of age in cardiac health and disease. Front
Pharmacol. 5:1542014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bers DM:
Ca2+-calmodulin-dependent protein kinase II regulation
of cardiac excitation-transcription coupling. Heart Rhythm.
8:1101–1104. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Couchonnal LF and Anderson ME: The role of
calmodulin kinase II in myocardial physiology and disease.
Physiology (Bethesda). 23:151–159. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Luczak ED and Anderson ME: CaMKII
oxidative activation and the pathogenesis of cardiac disease. J Mol
Cell Cardiol. 73:112–116. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bell JR, Vila-Petroff M and Delbridge LM:
CaMKII-dependent responses to ischemia and reperfusion challenges
in the heart. Front Pharmacol. 5:962014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Grimm M, Ling H and Brown JH: Crossing
signals: Relationships between β-adrenergic stimulation and CaMKII
activation. Heart Rhythm. 8:1296–1298. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao Z, Fefelova N, Shanmugam M, Bishara
P, Babu GJ and Xie LH: Angiotensin II induces afterdepolarizations
via reactive oxygen species and calmodulin kinase II signaling. J
Mol Cell Cardiol. 50:128–136. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Swaminathan PD, Purohit A, Hund TJ and
Anderson ME: Calmodulin-dependent protein kinase II: Linking heart
failure and arrhythmias. Circ Res. 110:1661–1677. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mishra S, Gray CB, Miyamoto S, Bers DM and
Brown JH: Location matters: Clarifying the concept of nuclear and
cytosolic CaMKII subtypes. Circ Res. 109:1354–1362. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Hoelz A, Nairn AC and Kuriyan J: Crystal
structure of a tetradecameric assembly of the association domain of
Ca2+/calmodulin-dependent kinase II. Mol Cell.
11:1241–1251. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Anderson ME, Brown JH and Bers DM: CaMKII
in myocardial hypertrophy and heart failure. J Mol Cell Cardiol.
51:468–473. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bers DM and Morotti S: Ca(2+) current
facilitation is CaMKII-dependent and has arrhythmogenic
consequences. Front Pharmacol. 5:1442014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mustroph J, Maier LS and Wagner S: CaMKII
regulation of cardiac K channels. Front Pharmacol. 5:202014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Sierra A, Zhu Z, Sapay N, Sharotri V,
Kline CF, Luczak ED, Subbotina E, Sivaprasadarao A, Snyder PM,
Mohler PJ, et al: Regulation of cardiac ATP-sensitive potassium
channel surface expression by calcium/calmodulin-dependent protein
kinase II. J Biol Chem. 288:1568–1581. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sellers ZM, De Arcangelis V, Xiang Y and
Best PM: Cardiomyocytes with disrupted CFTR function require CaMKII
and Ca(2+)-activated Cl(−) channel activity to maintain contraction
rate. J Physiol. 588:2417–2429. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Braun AP and Schulman H: The
multifunctional calcium/calmodulin-dependent protein kinase: From
form to function. Annu Rev Physiol. 57:417–445. 1995. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dupont G, Houart G and De Koninck P:
Sensitivity of CaM kinase II to the frequency of Ca2+
oscillations: A simple model. Cell Calcium. 34:485–497. 2003.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Respress JL, van Oort RJ, Li N, Rolim N,
Dixit SS, deAlmeida A, Voigt N, Lawrence WS, Skapura DG, Skårdal K,
et al: Role of RyR2 phosphorylation at S2814 during heart failure
progression. Circ Res. 110:1474–1483. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Anderson ME: Sticky fingers: CaMKII finds
a home on another ion channel. Circ Res. 104:712–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Makara MA, Curran J, Little SC, Musa H,
Polina I, Smith SA, Wright PJ, Unudurthi SD, Snyder J, Bennett V,
et al: Ankyrin-G coordinates intercalated disc signaling platform
to regulate cardiac excitability in vivo. Circ Res. 115:929–938.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sossalla S, Fluschnik N, Schotola H, Ort
KR, Neef S, Schulte T, Wittköpper K, Renner A, Schmitto JD, Gummert
J, et al: Inhibition of elevated
Ca2+/calmodulin-dependent protein kinase II improves
contractility in human failing myocardium. Circ Res. 107:1150–1161.
2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Maier LS: CaMKIIdelta overexpression in
hypertrophy and heart failure: Cellular consequences for
excitation-contraction coupling. Braz J Med Biol Res. 38:1293–1302.
2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Weinreuter M, Kreusser MM, Beckendorf J,
Schreiter FC, Leuschner F, Lehmann LH, Hofmann KP, Rostosky JS,
Diemert N, Xu C, et al: CaM kinase II mediates maladaptive
post-infarct remodeling and pro-inflammatory chemoattractant
signaling but not acute myocardial ischemia/reperfusion injury.
EMBO Mol Med. 6:1231–1245. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mattiazzi A, Bassani RA, Escobar AL,
Palomeque J, Valverde CA, Petroff M Vila and Bers DM: Chasing
cardiac physiology and pathology down the CaMKII cascade. Am J
Physiol Heart Circ Physiol. 308:H1177–H1191. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang T, Maier LS, Dalton ND, Miyamoto S,
Ross J Jr, Bers DM and Brown JH: The deltaC isoform of CaMKII is
activated in cardiac hypertrophy and induces dilated cardiomyopathy
and heart failure. Circ Res. 92:912–919. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Backs J, Backs T, Neef S, Kreusser MM,
Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA,
et al: The delta isoform of CaM kinase II is required for
pathological cardiac hypertrophy and remodeling after pressure
overload. Proc Natl Acad Sci USA. 106:2342–2347. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
van Oort RJ, McCauley MD, Dixit SS,
Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG,
Anderson ME, et al: Ryanodine receptor phosphorylation by
calcium/calmodulin-dependent protein kinase II promotes
life-threatening ventricular arrhythmias in mice with heart
failure. Circulation. 122:2669–2679. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kreusser MM, Lehmann LH, Keranov S, Hoting
MO, Oehl U, Kohlhaas M, Reil JC, Neumann K, Schneider MD, Hill JA,
et al: Cardiac CaM kinase II genes δ and γ contribute to adverse
remodeling but redundantly inhibit calcineurin-induced myocardial
hypertrophy. Circulation. 130:1262–1273. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wu Y and Anderson ME: CaMKII in sinoatrial
node physiology and dysfunction. Front Pharmacol. 5:482014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
DeGrande S, Nixon D, Koval O, Curran JW,
Wright P, Wang Q, Kashef F, Chiang D, Li N, Wehrens XH, et al:
CaMKII inhibition rescues proarrhythmic phenotypes in the model of
human ankyrin-B syndrome. Heart Rhythm. 9:2034–2041. 2012.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu N, Ruan Y, Denegri M, Bachetti T, Li
Y, Colombi B, Napolitano C, Coetzee WA and Priori SG: Calmodulin
kinase II inhibition prevents arrhythmias in RyR2(R4496C+/−) mice
with catecholaminergic polymorphic ventricular tachycardia. J Mol
Cell Cardiol. 50:214–222. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Erickson JR, Joiner ML, Guan X, Kutschke
W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O'Donnell SE,
Aykin-Burns N, et al: A dynamic pathway for calcium-independent
activation of CaMKII by methionine oxidation. Cell. 133:462–474.
2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chao LH, Pellicena P, Deindl S, Barclay
LA, Schulman H and Kuriyan J: Intersubunit capture of regulatory
segments is a component of cooperative CaMKII activation. Nat
Struct Mol Biol. 17:264–272. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Rueda JO Velez, Palomeque J and Mattiazzi
A: Early apoptosis in different models of cardiac hypertrophy
induced by high renin-angiotensin system activity involves CaMKII.
J Appl Physiol 1985. 112:2110–2120. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Luo M, Guan X, Luczak ED, Lang D, Kutschke
W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, et al:
Diabetes increases mortality after myocardial infarction by
oxidizing CaMKII. J Clin Invest. 123:1262–1274. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Singh MV, Swaminathan PD, Luczak ED,
Kutschke W, Weiss RM and Anderson ME: MyD88 mediated inflammatory
signaling leads to CaMKII oxidation, cardiac hypertrophy and death
after myocardial infarction. J Mol Cell Cardiol. 52:1135–1144.
2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Mollova MY, Katus HA and Backs J:
Regulation of CaMKII signaling in cardiovascular disease. Front
Pharmacol. 6:1782015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Pellicena P and Schulman H: CaMKII
inhibitors: From research tools to therapeutic agents. Front
Pharmacol. 5:212014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang R, Khoo MS, Wu Y, Yang Y, Grueter
CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, et al:
Calmodulin kinase II inhibition protects against structural heart
disease. Nat Med. 11:409–417. 2005. View
Article : Google Scholar : PubMed/NCBI
|
49
|
Cipolletta E, Rusciano MR, Maione AS,
Santulli G, Sorriento D, Del Giudice C, Ciccarelli M, Franco A,
Crola C, Campiglia P, et al: Targeting the CaMKII/ERK interaction
in the heart prevents cardiac hypertrophy. PLoS One.
10:e01304772015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Erickson JR, Pereira L, Wang L, Han G,
Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, et
al: Diabetic hyperglycaemia activates CaMKII and arrhythmias by
O-linked glycosylation. Nature. 502:372–376. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Stølen TO, Høydal MA, Kemi OJ, Catalucci
D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, et
al: Interval training normalizes cardiomyocyte function, diastolic
Ca2+ control, and SR Ca2+ release
synchronicity in a mouse model of diabetic cardiomyopathy. Circ
Res. 105:527–536. 2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bennett CE, Johnsen VL, Shearer J and
Belke DD: Exercise training mitigates aberrant cardiac protein
O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci.
92:657–663. 2013. View Article : Google Scholar : PubMed/NCBI
|