Exosomes are the mediators between the tumor microenvironment and prostate cancer (Review)
- Authors:
- Yiqi Wu
- Xiao Wang
- Yan Zeng
- Xiuheng Liu
-
Affiliations: Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China - Published online on: September 25, 2024 https://doi.org/10.3892/etm.2024.12728
- Article Number: 439
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Chen B, Xu N, Xu P, Lin W, Liu C and Huang P: Exosomes promote the transition of androgen-dependent prostate cancer cells into androgen-independent manner through up-regulating the heme oxygenase-1. Int J Nanomedicine. 16:315–327. 2021.PubMed/NCBI View Article : Google Scholar | |
Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, Gillessen S, Van der Kwast T and Bristow RG: Prostate cancer. Nat Rev Dis Primers. 7(9)2021.PubMed/NCBI View Article : Google Scholar | |
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090. 2021.PubMed/NCBI View Article : Google Scholar | |
Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019.PubMed/NCBI View Article : Google Scholar | |
Beit-Yannai E, Tabak S and Stamer WD: Physical exosome:Exosome interactions. J Cell Mol Med. 22:2001–2006. 2018.PubMed/NCBI View Article : Google Scholar | |
Terrasini N and Lionetti V: Exosomes in critical illness. Crit Care Med. 45:1054–1060. 2017.PubMed/NCBI View Article : Google Scholar | |
Soung YH, Ford S, Zhang V and Chung J: Exosomes in cancer diagnostics. Cancers (Basel). 9(8)2017.PubMed/NCBI View Article : Google Scholar | |
No authors listed. Exosomes. Nat Biotechnol. 38(1150)2020.PubMed/NCBI View Article : Google Scholar | |
Yang L: Tumor microenvironment and metabolism. Int J Mol Sci. 18(2729)2017.PubMed/NCBI View Article : Google Scholar | |
Anderson NM and Simon MC: The tumor microenvironment. Curr Biol. 30:R921–R925. 2020.PubMed/NCBI View Article : Google Scholar | |
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, et al: The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 39(204)2020.PubMed/NCBI View Article : Google Scholar | |
Hu C, Chen M, Jiang R, Guo Y, Wu M and Zhang X: Exosome-related tumor microenvironment. J Cancer. 9:3084–3092. 2018.PubMed/NCBI View Article : Google Scholar | |
Lau AN and Vander Heiden MG: Metabolism in the tumor microenvironment. Annu Rev Cancer Biol. 4:17–40. 2020. | |
Ugel S, Canè S, De Sanctis F and Bronte V: Monocytes in the tumor microenvironment. Annu Rev Pathol. 16:93–122. 2021.PubMed/NCBI View Article : Google Scholar | |
Pan BT and Johnstone RM: Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell. 33:967–978. 1983.PubMed/NCBI View Article : Google Scholar | |
Wróblewska JP, Lach MS, Kulcenty K, Galus Ł, Suchorska WM, Rösel D, Brábek J and Marszałek A: The analysis of inflammation-related proteins in a cargo of exosomes derived from the serum of uveal melanoma patients reveals potential biomarkers of disease progression. Cancers (Basel). 13(3334)2021.PubMed/NCBI View Article : Google Scholar | |
Javed A, Kong N, Mathesh M, Duan W and Yang W: Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. Sci Technol Adv Mater. 25(2345041)2024.PubMed/NCBI View Article : Google Scholar | |
Kakarla R, Hur J, Kim YJ, Kim J and Chwae YJ: Apoptotic cell-derived exosomes: Messages from dying cells. Exp Mol Med. 52:1–6. 2020.PubMed/NCBI View Article : Google Scholar | |
Kiral FR, Kohrs FE, Jin EJ and Hiesinger PR: Rab GTPases and membrane trafficking in neurodegeneration. Curr Biol. 28:R471–R486. 2018.PubMed/NCBI View Article : Google Scholar | |
Shikanai M, Yuzaki M and Kawauchi T: Rab family small GTPases-mediated regulation of intracellular logistics in neural development. Histol Histopathol. 33:765–771. 2018.PubMed/NCBI View Article : Google Scholar | |
Vitale I, Manic G, Coussens LM, Kroemer G and Galluzzi L: Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30:36–50. 2019.PubMed/NCBI View Article : Google Scholar | |
Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7(e2312)2016.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Dou H, Liu Y, Yu P, Li F, Wang Y and Xiao M: Breast cancer exosome-derived miR-425-5p Induces cancer-associated fibroblast-like properties in human mammary fibroblasts by TGF β 1/ROS signaling pathway. Oxid Med Cell Longev. 2022(5266627)2022.PubMed/NCBI View Article : Google Scholar | |
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis. 12(1120)2021.PubMed/NCBI View Article : Google Scholar | |
Kang J and Guo Y: Human umbilical cord mesenchymal stem cells derived exosomes promote neurological function recovery in a rat spinal cord injury model. Neurochem Res. 47:1532–1540. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang G, Yuan J, Cai X, Xu Z, Wang J, Ocansey DKW, Yan Y, Qian H, Zhang X, Xu W and Mao F: HucMSC-exosomes carrying miR-326 inhibit neddylation to relieve inflammatory bowel disease in mice. Clin Transl Med. 10(e113)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Chen L, Chen X, Qin Y, Tian C, Dai X, Meng R, Zhong Y, Liang W, Shen C, et al: Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSC-EXO) regulate autophagy through AMPK-ULK1 signaling pathway to ameliorate diabetic cardiomyopathy. Biochem Biophys Res Commun. 632:195–203. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang X, Cui Z, Zeng B, Qiong Z and Long Z: Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark. 34:533–543. 2022.PubMed/NCBI View Article : Google Scholar | |
Pan Y, Wang X, Li Y, Yan P and Zhang H: Human umbilical cord blood mesenchymal stem cells-derived exosomal microRNA-503-3p inhibits progression of human endometrial cancer cells through downregulating MEST. Cancer Gene Ther. 29:1130–1139. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Huo M, Li W, Zhang H, Liu Q, Jiang J, Fu Y and Huang C: Exosomes in tumor-stroma crosstalk: Shaping the immune microenvironment in colorectal cancer. FASEB J. 38(e23548)2024.PubMed/NCBI View Article : Google Scholar | |
Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH, Liang JY, Sun MG, Fan LS, Liang L and Wang W: Hypoxia-induced ZEB1 promotes cervical cancer immune evasion by strengthening the CD47-SIRPα axis. Cell Commun Signal. 22(15)2024.PubMed/NCBI View Article : Google Scholar | |
Giovannelli P, Di Donato M, Galasso G, Monaco A, Licitra F, Perillo B, Migliaccio A and Castoria G: Communication between cells: Exosomes as a delivery system in prostate cancer. Cell Commun Signal. 19(110)2021.PubMed/NCBI View Article : Google Scholar | |
Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, et al: Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 284:34211–3422. 2009.PubMed/NCBI View Article : Google Scholar | |
Wang X, Sun C, Huang X, Li J, Fu Z, Li W and Yin Y: The advancing roles of exosomes in breast cancer. Front Cell Dev Biol. 9(731062)2021.PubMed/NCBI View Article : Google Scholar | |
Ban JJ, Lee M, Im W and Kim M: Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 461:76–79. 2015.PubMed/NCBI View Article : Google Scholar | |
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M and Abd Elmageed ZY: Exosomes are the driving force in preparing the soil for the metastatic seeds: Lessons from the prostate cancer. Cells. 9(564)2020.PubMed/NCBI View Article : Google Scholar | |
Li Z, He P, Luo G, Shi X, Yuan G, Zhang B, Seidl C, Gewies A, Wang Y, Zou Y, et al: Increased tumoral microenvironmental pH improves cytotoxic effect of pharmacologic ascorbic acid in castration-resistant prostate cancer cells. Front Pharmacol. 11(570939)2020.PubMed/NCBI View Article : Google Scholar | |
Xi L, Peng M, Liu S, Liu Y, Wan X, Hou Y, Qin Y, Yang L, Chen S, Zeng H, et al: Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion. J Extracell Vesicles. 10(e12146)2021.PubMed/NCBI View Article : Google Scholar | |
Luo C, Xin H, Zhou Z, Hu Z, Sun R, Yao N, Sun Q, Borjigin U, Wu X, Fan J, et al: Tumor-derived exosomes induce immunosuppressive macrophages to foster intrahepatic cholangiocarcinoma progression. Hepatology. 76:982–999. 2022.PubMed/NCBI View Article : Google Scholar | |
Shen Y, Guo D, Weng L, Wang S, Ma Z, Yang Y, Wang P, Wang J and Cai Z: Tumor-derived exosomes educate dendritic cells to promote tumor metastasis via HSP72/HSP105-TLR2/TLR4 pathway. OncoImmunology. 6(e1362527)2017.PubMed/NCBI View Article : Google Scholar | |
Deicher A, Andersson R, Tingstedt B, Lindell G, Bauden M and Ansari D: Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int. 18(85)2018.PubMed/NCBI View Article : Google Scholar | |
Panigrahi GK, Praharaj PP, Peak TC, Long J, Singh R, Rhim JS, Abd Elmageed ZY and Deep G: Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Sci Rep. 8(3853)2018.PubMed/NCBI View Article : Google Scholar | |
Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, Vattulainen I, Ekroos K and Sandvig K: Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 1831:1302–1309. 2013.PubMed/NCBI View Article : Google Scholar | |
Bertokova A, Svecova N, Kozics K, Gabelova A, Vikartovska A, Jane E, Hires M, Bertok T and Tkac J: Exosomes from prostate cancer cell lines: Isolation optimisation and characterisation. Biomed Pharmacother. 151(113093)2022.PubMed/NCBI View Article : Google Scholar | |
Spetzler D, Pawlowski TL, Tinder T, Kimbrough J, Deng T, Kim J, Moran B, Conrad A, Esmay P and Kuslich C: The molecular evolution of prostate cancer cell line exosomes with passage number. J Clin Oncol. 28 (15 Suppl)(e21071)2010. | |
Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, Schneider C and Horvath R: RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance. 3(e202000678)2020.PubMed/NCBI View Article : Google Scholar | |
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, et al: Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol. 12(144)2019.PubMed/NCBI View Article : Google Scholar | |
Adekoya TO and Richardson RM: Cytokines and chemokines as mediators of prostate cancer metastasis. Int J Mol Sci. 21(4449)2020.PubMed/NCBI View Article : Google Scholar | |
Dann J, Castronovo FP, McKusick KA, Griffin PP, Strauss HW and Prout GR Jr: Total bone uptake in management of metastatic carcinoma of the prostate. J Urol. 137:444–448. 1987.PubMed/NCBI View Article : Google Scholar | |
Chau CH and Figg WD: Molecular and phenotypic heterogeneity of metastatic prostate cancer. Cancer Biol Ther. 4:166–167. 2005.PubMed/NCBI View Article : Google Scholar | |
Bilen MA, Pan T, Lee YC, Lin SC, Yu G, Pan J, Hawke D, Pan BF, Vykoukal J, Gray K, et al: Proteomics profiling of exosomes from primary mouse osteoblasts under proliferation versus mineralization conditions and characterization of their uptake into prostate cancer cells. J Proteome Res. 16:2709–2728. 2017.PubMed/NCBI View Article : Google Scholar | |
Renzulli JF II, Del Tatto M, Dooner G, Aliotta J, Goldstein L, Dooner M, Colvin G, Chatterjee D and Quesenberry P: Microvesicle induction of prostate specific gene expression in normal human bone marrow cells. J Urol. 184:2165–2171. 2010.PubMed/NCBI View Article : Google Scholar | |
Duan Y, Tan Z, Yang M, Li J, Liu C, Wang C, Zhang F, Jin Y, Wang Y and Zhu L: PC-3-derived exosomes inhibit osteoclast differentiation by downregulating miR-214 and blocking NF-κB signaling pathway. Biomed Res Int. 2019(8650846)2019.PubMed/NCBI View Article : Google Scholar | |
Karlsson T, Lundholm M, Widmark A and Persson E: Tumor cell-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLoS One. 11(e0166284)2016.PubMed/NCBI View Article : Google Scholar | |
Lee J, Kwon MH, Kim JA and Rhee WJ: Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer. Artif Cells Nanomed Biotechnol. 46 (Suppl 3):S52–S63. 2018.PubMed/NCBI View Article : Google Scholar | |
Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y, Gong F and Jiang W: Exosomes derived from miR-143-Overexpressing MSCs inhibit cell migration and invasion in human prostate cancer by downregulating TFF3. Mol Ther Nucleic Acids. 18:232–244. 2019.PubMed/NCBI View Article : Google Scholar | |
Li T, Sun X and Chen L: Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J Cell Biochem. 121:2118–2126. 2019.PubMed/NCBI View Article : Google Scholar | |
Petanidis S, Domvri K, Porpodis K, Anestakis D, Freitag L, Hohenforst-Schmidt W, Tsavlis D and Zarogoulidis K: Inhibition of kras-derived exosomes downregulates immunosuppressive BACH2/GATA-3 expression via RIP-3 dependent necroptosis and miR-146/miR-210 modulation. Biomed Pharmacother. 122(109461)2020.PubMed/NCBI View Article : Google Scholar | |
Ayala-Mar S, Donoso-Quezada J and González-Valdez J: Clinical implications of exosomal PD-L1 in cancer immunotherapy. J Immunol Res. 2021(8839978)2021.PubMed/NCBI View Article : Google Scholar | |
Wang J, Zeng H, Zhang H and Han Y: The role of exosomal PD-L1 in tumor immunotherapy. Transl Oncol. 14(101047)2021.PubMed/NCBI View Article : Google Scholar | |
Bai W, Tang X, Xiao T, Qiao Y, Tian X, Zhu B, Chen J, Chen C, Li Y, Lin X, et al: Enhancing antitumor efficacy of oncolytic virus M1 via albendazole-sustained CD8+ T cell activation. Mol Ther Oncol. 32(200813)2024.PubMed/NCBI View Article : Google Scholar | |
Liu J, Wu S, Zheng X, Zheng P, Fu Y, Wu C, Lu B, Ju J and Jiang J: Immune suppressed tumor microenvironment by exosomes derived from gastric cancer cells via modulating immune functions. Sci Rep. 10(14749)2020.PubMed/NCBI View Article : Google Scholar | |
Yang J, Chen J, Liang H and Yu Y: Nasopharyngeal cancer cell-derived exosomal PD-L1 inhibits CD8+ T-cell activity and promotes immune escape. Cancer Sci. 113:3044–3054. 2022.PubMed/NCBI View Article : Google Scholar | |
Kim DH, Kim H, Choi YJ, Kim SY, Lee JE, Sung KJ, Sung YH, Pack CG, Jung MK, Han B, et al: Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med. 51:1–13. 2019.PubMed/NCBI View Article : Google Scholar | |
Schmittgen TD: Exosomal miRNA cargo as mediator of immune escape mechanisms in neuroblastoma. Cancer Res. 79:1293–1294. 2019.PubMed/NCBI View Article : Google Scholar | |
Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med. 24:9560–9573. 2020.PubMed/NCBI View Article : Google Scholar | |
Palicelli A, Bonacini M, Croci S, Bisagni A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, et al: What do we have to know about PD-L1 expression in prostate cancer? A systematic literature review. Part 7: PD-L1 expression in liquid biopsy. J Pers Med. 11(1312)2021.PubMed/NCBI View Article : Google Scholar | |
Xu W, Lu M, Xie S, Zhou D, Zhu M and Liang C: Endoplasmic reticulum stress promotes prostate cancer cells to release exosome and up-regulate PD-L1 expression via PI3K/Akt signaling pathway in macrophages. J Cancer. 14:1062–1074. 2023.PubMed/NCBI View Article : Google Scholar | |
Li D, Zhou X, Xu W, Chen Y, Mu C, Zhao X, Yang T, Wang G, Wei L and Ma B: Prostate cancer cells synergistically defend against CD8+ T cells by secreting exosomal PD-L1. Cancer Med. 12:16405–16415. 2023.PubMed/NCBI View Article : Google Scholar | |
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME and Eskandari N: The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer. 20(83)2021.PubMed/NCBI View Article : Google Scholar | |
Felmeden DC, Blann AD and Lip GYH: Angiogenesis: Basic pathophysiology and implications for disease. Eur Heart J. 24:586–603. 2003.PubMed/NCBI View Article : Google Scholar | |
Kargozar S, Baino F, Hamzehlou S, Hamblin MR and Mozafari M: Nanotechnology for angiogenesis: Opportunities and challenges. Chem Soc Rev. 49:5008–5057. 2020.PubMed/NCBI View Article : Google Scholar | |
Jin Y, Xing J, Xu K, Liu D and Zhuo Y: Exosomes in the tumor microenvironment: Promoting cancer progression. Front Immunol. 13(1025218)2022.PubMed/NCBI View Article : Google Scholar | |
Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang X, Pan J, Fan J, Qi S and Qiu B: Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY). 11:5300–5318. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Ji Q, Yang Y, Li Q and Wang Z: Exosome: Function and role in cancer metastasis and drug resistance. Technol Cancer Res Treat. 17(1533033818763450)2018.PubMed/NCBI View Article : Google Scholar | |
Khan S, Jutzy JMS, Valenzuela MMA, Turay D, Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB and Wall NR: Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One. 7(e46737)2012.PubMed/NCBI View Article : Google Scholar | |
Bagnato G, Leopizzi M, Urciuoli E and Peruzzi B: Nuclear functions of the tyrosine kinase Src. Int J Mol Sci. 21(2675)2020.PubMed/NCBI View Article : Google Scholar | |
Rivera-Torres J and San José E: Src tyrosine kinase inhibitors: New perspectives on their immune, antiviral, and senotherapeutic potential. Front Pharmacol. 10(1011)2019.PubMed/NCBI View Article : Google Scholar | |
DeRita RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL and Languino RL: c-Src, insulin-like growth factor I receptor, G-protein-coupled receptor kinases and focal adhesion kinase are enriched into prostate cancer cell exosomes. J Cell Biochem. 118:66–73. 2016.PubMed/NCBI View Article : Google Scholar | |
Larssen P, Wik L, Czarnewski P, Eldh M, Löf L, Ronquist KG, Dubois L, Freyhult E, Gallant CJ, Oelrich J, et al: Tracing cellular origin of human exosomes using multiplex proximity extension assays. Mol Cell Proteomics. 16:502–511. 2017.PubMed/NCBI View Article : Google Scholar | |
Alcayaga-Miranda F, González PL, Lopez-Verrilli A, Varas-Godoy M, Aguila-Díaz C, Contreras L and Khoury M: Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget. 7:44462–44477. 2016.PubMed/NCBI View Article : Google Scholar | |
Maisto R, Oltra M, Vidal-Gil L, Martínez-Gil N, Sancho-Pellúz J, Filippo CD, Rossi S, D Amico M, Barcia JM and Romero FJ: ARPE-19-derived VEGF-containing exosomes promote neovascularization in HUVEC: The role of the melanocortin receptor 5. Cell Cycle. 18:413–424. 2019.PubMed/NCBI View Article : Google Scholar |