Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review)
- This article is part of the special Issue: Significance of molecular analyses in the era of personalized tumor therapy
- Authors:
- Wenhui Hao
- Barani Kumar Rajendran
- Tingting Cui
- Jiayi Sun
- Yingchun Zhao
- Thirunavukkarasu Palaniyandi
- Masilamani Selvam
-
Affiliations: Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China, Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China, Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India, Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India - Published online on: October 24, 2024 https://doi.org/10.3892/ijmm.2024.5447
- Article Number: 6
-
Copyright: © Hao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Harvey-Jones E, Raghunandan M, Robbez-Masson L, Magraner-Pardo L, Alaguthurai T, Yablonovitch A, Yen J, Xiao H, Brough R, Frankum J, et al: Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor resistant advanced breast cancer. Ann Oncol. 35:364–380. 2024. View Article : Google Scholar : PubMed/NCBI | |
Waghela BN, Vaidya FU, Ranjan K, Chhipa AS, Tiwari BS and Pathak C: AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol Cell Biochem. 476:585–598. 2021. View Article : Google Scholar | |
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al: IFN-ү-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 127:2930–2940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bhaskaran SP, Huang T, Rajendran BK, Guo M, Luo J, Qin Z, Zhao B, Chian J, Li S and Wang SM: Ethnic-specific BRCA1/2 variation within Asia population: evidence from over 78 000 cancer and 40 000 non-cancer cases of Indian, Chinese, Korean and Japanese populations. J Med Genet. 58:752–759. 2021. View Article : Google Scholar | |
Yuan H, Xiu L, Li N, Li Y, Wu L and Yao H: PARPis response and outcome of ovarian cancer patients with BRCA1/2 germline mutation and a history of breast cancer. J Gynecol Oncol. 35:e512024. View Article : Google Scholar : PubMed/NCBI | |
Ranjan K and Pathak C: Expression of cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and Regulates p53 Dependent Ubiquitination of Beclin-1 During Autophagic Stress. J Cell Biochem. 117:1757–1768. 2016. View Article : Google Scholar | |
Ranjan K, Hedl M, Sinha S, Zhang X and Abraham C: Ubiquitination of ATF6 by disease-associated RNF186 promotes the innate receptor-induced unfolded protein response. J Clin Invest. 131:e1454722021. View Article : Google Scholar : PubMed/NCBI | |
Salvadores M and Supek F: Cell cycle gene alterations associate with a redistribution of mutation risk across chromosomal domains in human cancers. Nat Cancer. 5:330–346. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Guo W, Wang X, Zhou K, Guo S, Liu Y, Sun T, Li S, Xu Z, Yuan Q, et al: Mutational profiling of mitochondrial DNA reveals an epithelial ovarian cancer-specific evolutionary pattern contributing to high oxidative metabolism. Clin Transl Med. 14:e15232024. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Yang J, Chen X, Wang Y, Wang X, Zhao M, Li G, Wang Y, Zhu Y, Yan F, et al: Integrated Bulk and Single-cell RNA sequencing data constructs and validates a prognostic model for non-small cell lung cancer. J Cancer. 15:796–808. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yu L and Wang L, Yin X, Liu K, Liu W, Lin S and Wang L: Integrated analysis of single-cell and bulk RNA sequencing data reveals immune-related lncRNA-mRNA prognostic signature in triple-negative breast cancer. Genes Dis. 11:571–574. 2024. View Article : Google Scholar | |
Brown AL, Li M, Goncearenco A and Panchenko AR: Finding driver mutations in cancer: Elucidating the role of background mutational processes. PLoS Comput Biol. 15:e10069812019. View Article : Google Scholar : PubMed/NCBI | |
Li F, Gao L, Wang P and Hu Y: Identifying cancer specific driver modules using a network-based method. Molecules. 23:11142018. View Article : Google Scholar : PubMed/NCBI | |
Pala L, Sala I, Pagan E, De Pas T, Zattarin E, Catania C, Cocorocchio E, Rossi G, Laszlo D, Ceresoli G, et al: 'Heterogeneity of treatment effect on patients' long-term outcome according to pathological response type in neoadjuvant RCTs for breast cancer.'. Breast. 73:1036722024. View Article : Google Scholar | |
Schade E: A differentform for the certification of cause of death. Ned Tijdschr Geneeskd. 130:2310–2312. 1986.In Dutch. | |
Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar | |
Akinpelu A, Akinsipe T, Avila LA, Arnold RD and Mistriotis P: The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev. 43:823–844. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J and Trajanoski Z: A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 15:256–278. 2014. View Article : Google Scholar : | |
Phillips KA, Deverka PA, Sox HC, Khoury MJ, Sandy LG, Ginsburg GS, Tunis SR, Orlando LA and Douglas MP: Making genomic medicine evidence-based and patient-centered: A structured review and landscape analysis of comparative effectiveness research. Genet Med. 19:1081–1091. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ranjan K, Hedl M and Abraham C: The E3 ubiquitin ligase RNF186 and RNF186 risk variants regulate innate receptor-induced outcomes. Proc Natl Acad Sci USA. 118:e20135001182021. View Article : Google Scholar : PubMed/NCBI | |
Krebs K and Milani L: Translating pharmacogenomics into clinical decisions: Do not let the perfect be the enemy of the good. Hum Genomics. 13:392019. View Article : Google Scholar : PubMed/NCBI | |
Ding RB, Chen P, Rajendran BK, Lyu X, Wang H, Bao J, Zeng J, Hao W, Sun H, Wong AH, et al: Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 12:30462021. View Article : Google Scholar : PubMed/NCBI | |
Nain P, Seth L, Bell AS, Raval P, Sharma G, Bethel M, Sharma G and Guha A: Chemotherapy in Pregnancy: Assessing the safety of adriamycin administration in pregnancy complicated by breast cancer. JACC Case Rep. 28:1021412023. View Article : Google Scholar | |
Dey N, Williams C, Leyland-Jones B and De P: Mutation matters in precision medicine: A future to believe in. Cancer Treat Rev. 55:136–149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rajendran BK and Deng CX: A comprehensive genomic meta-analysis identifies confirmatory role of OBSCN gene in breast tumorigenesis. Oncotarget. 8:102263–102276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsuchida J, Rothman J, McDonald KA, Nagahashi M, Takabe K and Wakai T: Clinical target sequencing for precision medicine of breast cancer. Int J Clin Oncol. 24:131–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ramage KS, Lock A, White JM, Ekins MG, Kiefel MJ, Avery VM and Davis RA: Semisynthesis and Cytotoxic Evaluation of an Ether Analogue Library Based on a Polyhalogenated Diphenyl Ether Scaffold Isolated from a Lamellodysidea Sponge. Mar Drugs. 22:332024. View Article : Google Scholar : PubMed/NCBI | |
Hyman DM, Taylor BS and Baselga J: Implementing Genome-Driven Oncology. Cell. 168:584–599. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ranjan K and Pathak C: Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 422:135–150. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES and Getz G: Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jia P, Wang Q, Chen Q, Hutchinson KE, Pao W and Zhao Z: MSEA: Detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol. 15:4892014. View Article : Google Scholar : PubMed/NCBI | |
Mularoni L, Sabarinathan R, Deu-Pons J, Gonzalez-Perez A and Lopez-Bigas N: OncodriveFML: A general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol. 17:1282016. View Article : Google Scholar : PubMed/NCBI | |
Tamborero D, Gonzalez-Perez A and Lopez-Bigas N: OncodriveCLUST: Exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 29:2238–2244. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, Mooney TB, Callaway MB, Dooling D, Mardis ER, et al: MuSiC: Identifying mutational significance in cancer genomes. Genome Res. 22:1589–1598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Reimand J and Bader GD: Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol. 9:6372013. View Article : Google Scholar : PubMed/NCBI | |
Ng PC and Henikoff S: Accounting for human polymorphisms predicted to affect protein function. Genome Res. 12:436–446. 2002. View Article : Google Scholar : PubMed/NCBI | |
Adzhubei I, Jordan DM and Sunyaev SR: Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter. 7:Unit7 20. 2013. | |
Carter H, Douville C, Stenson PD, Cooper DN and Karchin R: Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics. 14(Suppl 3): S32013. View Article : Google Scholar : PubMed/NCBI | |
Wong WC, Kim D, Carter H, Diekhans M, Ryan MC and Karchin R: CHASM and SNVBox: Toolkit for detecting biologically important single nucleotide mutations in cancer. Bioinformatics. 27:2147–2148. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reva B, Antipin Y and Sander C: Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39:e1182011. View Article : Google Scholar : PubMed/NCBI | |
Rajendran BK and Deng CX: Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget. 8:50252–50272. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Shi Q and Wang W: Double agents: Genes with both oncogenic and tumor-suppressor functions. Oncogenesis. 7:252018. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Huang D, Yi X, Zhang S, Wang Z, Yan B, Chung Sham P, Chen K and Jun Li M: Diversity spectrum analysis identifies mutation-specific effects of cancer driver genes. Commun Biol. 3:62020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Cheng F and Zhao Z: SGDriver: A novel structural genomics-based approach to prioritize cancer related and potentially druggable somatic mutations. BMC Bioinformatics. 16(suppl 15): P212015. View Article : Google Scholar : | |
Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, Lander ES and Getz G: Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci USA. 112:E5486–E5495. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B and Karchin R: Evaluating the evaluation of cancer driver genes. Proc Natl Acad Sci USA. 113:14330–14335. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ipe J, Swart M, Burgess KS and Skaar TC: High-Throughput assays to assess the functional impact of genetic variants: A road towards genomic-driven medicine. Clin Transl Sci. 10:67–77. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar | |
Leyens L, Reumann M, Malats N and Brand A: Use of big data for drug development and for public and personal health and care. Genet Epidemiol. 41:51–60. 2017. View Article : Google Scholar | |
Pierobon M, Ramos C, Wong S, Hodge KA, Aldrich J, Byron S, Anthony SP, Robert NJ, Northfelt DW, Jahanzeb M, et al: Enrichment of PI3K-AKT-mTOR pathway activation in hepatic metastases from breast cancer. Clin Cancer Res. 23:4919–4928. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Korkaya H and Wicha M: Reprogramming of normal stem cells and cancer stem cells by the tumor microenvironment. Nat Rev Cancer. 13:763–776. 2013. | |
Pipek O, Alpar D, Rusz O, Bodor C, Udvarnoki Z, Medgyes-Horvath A, Csabai I, Szallasi Z, Madaras L, Kahan Z, et al: Genomic Landscape of Normal and Breast Cancer Tissues in a Hungarian Pilot Cohort. Int J Mol Sci. 24:85532023. View Article : Google Scholar : PubMed/NCBI | |
Nakai K, Hung MC and Yamaguchi H: A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res. 6:1609–1623. 2016.PubMed/NCBI | |
Zhao S, Ma Y, Liu L, Fang J, Ma H, Feng G, Xie B, Zeng S, Chang J, Ren J, et al: Ningetinib plus gefitinib in EGFR-mutant non-small-cell lung cancer with MET and AXL dysregulations: A phase 1b clinical trial and biomarker analysis. Lung Cancer. 188:1074682024. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Chen Q, Lv D, Lin L and Huang J: Pulmonary Adenocarcinoma Patient with Complex Mutations on EGFR benefits from furmonertinib after acquiring gefitinib resistance: A case report. Recent Pat Anticancer Drug Discov. 19:247–252. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lewis GD, Li G, Guo J, Yu SF, Fields CT, Lee G, Zhang D, Dragovich PS, Pillow T, Wei B, et al: The HER2-directed antibody-drug conjugate DHES0815A in advanced and/or metastatic breast cancer: Preclinical characterization and phase 1 trial results. Nat Commun. 15:4662024. View Article : Google Scholar : PubMed/NCBI | |
Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S, et al: Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3:224–237. 2013. View Article : Google Scholar : | |
Rexer BN, Ghosh R, Na rasanna A, Estrada MV, Chakrabarty A, Song Y, Engelman JA and Arteaga CL: Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2. Clin Cancer Res. 19:5390–5401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ben-Baruch NE, Bose R, Kavuri SM, Ma CX and Ellis MJ: HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor. J Natl Compr Canc Netw. 13:1061–1064. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hanker AB, Brewer MR, Sheehan JH, Koch JP, Sliwoski GR, Nagy R, Lanman R, Berger MF, Hyman DM, Solit DB, et al: An Acquired HER2(T798I) Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 mutant-driven breast cancer. Cancer Discov. 7:575–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, Juric D, Quinn DI, Moreno V, Doger B, et al: HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature. 554:189–194. 2018. View Article : Google Scholar : PubMed/NCBI | |
Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, Zuo D, Liu L, Bertos NR, Munoz-Ramos V, et al: A Targetable EGFR-Dependent tumor-initiating program in breast cancer. Cell Rep. 21:1140–1149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, Pearson A, Guzman M, Rodriguez O, Grueso J, et al: Early Adaptation and Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor-Positive Breast Cancer. Cancer Res. 76:2301–2313. 2016. View Article : Google Scholar : PubMed/NCBI | |
Condorelli R, Spring L, O'Shaughnessy J, Lacroix L, Bailleux C, Scott V, Dubois J, Nagy RJ, Lanman RB, Iafrate AJ, et al: Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol. 29:640–645. 2018. View Article : Google Scholar | |
Woodward ER, Lalloo F, Forde C, Pugh S, Burghel GJ, Schlecht H, Harkness EF, Howell A, Howell SJ, Gandhi A and Evans DG: Germline testing of BRCA1, BRCA2, PALB2 and CHEK2 c.1100delC in 1514 triple negative familial and isolated breast cancers from a single centre, with extended testing of ATM, RAD51C and RAD51D in over 400. J Med Genet. 61:385–391. 2023. View Article : Google Scholar : PubMed/NCBI | |
Belli C, Duso BA, Ferraro E and Curigliano G: Homologous recombination deficiency in triple negative breast cancer. Breast. 45:15–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miao K, Lei JH, Valecha MV, Zhang A, Xu J, Wang L, Lyu X, Chen S, Miao Z, Zhang X, et al: NOTCH1 activation compensates BRCA1 deficiency and promotes triple-negative breast cancer formation. Nat Commun. 11:32562020. View Article : Google Scholar : PubMed/NCBI | |
McCann KE and Hurvitz SA: Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context. 7:2125402018. View Article : Google Scholar : PubMed/NCBI | |
Caron MC, Sharma AK, O'Sullivan J, Myler LR, Ferreira MT, Rodrigue A, Coulombe Y, Ethier C, Gagne JP, Langelier MF, et al: Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat Commun. 10:29542019. View Article : Google Scholar : PubMed/NCBI | |
Bailly C, Thuru X and Quesnel B: Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer. 2:zcaa0022020. View Article : Google Scholar : PubMed/NCBI | |
van Kesteren Ch, de Vooght MM, Lopez-Lazaro L, Mathot RA, Schellens JH, Jimeno JM and Beijnen JH: Yondelis (trabectedin, ET-743): The development of an anticancer agent of marine origin. Anticancer Drugs. 14:487–502. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zelek L, Yovine A, Brain E, Turpin F, Taamma A, Riofrio M, Spielmann M, Jimeno J and Misset JL: A phase II study of Yondelis (trabectedin, ET-743) as a 24-h continuous intravenous infusion in pretreated advanced breast cancer. Br J Cancer. 94:1610–1614. 2006. View Article : Google Scholar : PubMed/NCBI | |
Le Cesne A, Martin-Broto J and Grignani G: A review of the efficacy of trabectedin as second-line treatment of advanced soft tissue sarcoma. Future Oncol. 18(30s): 5–11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, et al: Olaparib for metastatic breast cancer in patients with a Germline BRCA Mutation. N Engl J Med. 377:523–533. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, Korach J, Huzarski T, Poveda A, Pignata S, et al: Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18:1274–1284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kalra M, Tong Y, Jones DR, Walsh T, Danso MA, Ma CX, Silverman P, King MC, Badve SS, Perkins SM and Miller KD: Cisplatin +/− rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer. NPJ Breast Cancer. 7:292021. View Article : Google Scholar | |
Kaplan AR, Gueble SE, Liu Y, Oeck S, Kim H, Yun Z and Glazer PM: Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci Transl Med. 11:eaav45082019. View Article : Google Scholar : PubMed/NCBI | |
Telli ML, Jensen KC, Vinayak S, Kurian AW, Lipson JA, Flaherty PJ, Timms K, Abkevich V, Schackmann EA, Wapnir IL, et al: Phase II study of gemcitabine, carboplatin, and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J Clin Oncol. 33:1895–1901. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shamseddine AI and Farhat FS: Platinum-based compounds for the treatment of metastatic breast cancer. Chemotherapy. 57:468–487. 2011. View Article : Google Scholar | |
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hyams DM, Chan A, de Oliveira C, Snyder R, Vinholes J, Audeh MW, Alencar VM, Lombard J, Mookerjee B, Xu J, et al: Cediranib in combination with fulvestrant in hormone-sensitive metastatic breast cancer: A randomized Phase II study. Invest New Drugs. 31:1345–1354. 2013. View Article : Google Scholar : PubMed/NCBI | |
Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et al: Talazoparib in patients with advanced breast cancer and a germline BRCA Mutation. N Engl J Med. 379:753–763. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ettl J, Quek RGW, Lee KH, Rugo HS, Hurvitz S, Goncalves A, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et al: Quality of life with talazoparib versus physician's choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol. 29:1939–1947. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, Bristow RG, Classon MK and Glazer PM: Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 65:11597–11604. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kumar M, Ranjan K, Singh V, Pathak C, Pappachan A and Singh DD: Hydrophilic Acylated Surface Protein A (HASPA) of Leishmania donovani: Expression, Purification and Biophysico-Chemical Characterization. Protein J. 36:343–351. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu ZB, Zhang L, Bian J and Jian J: Combination strategies of checkpoint immunotherapy in metastatic breast cancer. Onco Targets Ther. 13:2657–2666. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G and Zitvogel L: Cancer immunotherapy in 2017: The breakthrough of the microbiota. Nat Rev Immunol. 18:87–88. 2018. View Article : Google Scholar : PubMed/NCBI | |
Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, Seliger B and Marincola FM: Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 81:116–129. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xu Z, Wu KL, Yu L, Wang C, Ding H, Gao Y, Sun H, Wu YH, Xia M, et al: Siglec-15/sialic acid axis as a central glyco-immune checkpoint in breast cancer bone metastasis. Proc Natl Acad Sci USA. 121:e23129291212024. View Article : Google Scholar : PubMed/NCBI | |
Krasniqi E, Barchiesi G, Pizzuti L, Mazzotta M, Venuti A, Maugeri-Sacca M, Sanguineti G, Massimiani G, Sergi D, Carpano S, et al: Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol. 12:1112019. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sharmni Vishnu K, Win TT, Aye SN and Basavaraj AK: Combined atezolizumab and nab-paclitaxel in the treatment of triple negative breast cancer: A meta-analysis on their efficacy and safety. BMC Cancer. 22:11392022. View Article : Google Scholar : PubMed/NCBI | |
Darvin P, Toor SM, Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Aranda M and Redondo M: Immunotherapy: A challenge of breast cancer treatment. Cancers (Basel). 11:18222019. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Aranda M and Redondo M: Protein kinase targets in breast cancer. Int J Mol Sci. 18:25432017. View Article : Google Scholar : PubMed/NCBI | |
Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C and Lebecque S: Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res. 10:7466–7474. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL and Banham AH: Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 24:5373–5380. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I, Olive D, et al: Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69:2000–2009. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL and Gress RE: Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood. 84:2221–2228. 1994. View Article : Google Scholar : PubMed/NCBI | |
Guckel B, Stumm S, Rentzsch C, Marme A, Mannhardt G and Wallwiener D: A CD80-transfected human breast cancer cell variant induces HER-2/neu-specific T cells in HLA-A*02-matched situations in vitro as well as in vivo. Cancer Immunol Immunother. 54:129–140. 2005. View Article : Google Scholar | |
Morse MA, Chaudhry A, Gabitzsch ES, Hobeika AC, Osada T, Clay TM, Amalfitano A, Burnett BK, Devi GR, Hsu DS, et al: Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol Immunother. 62:1293–1301. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kouloulias VE, Dardoufas CE, Kouvaris JR, Gennatas CS, Polyzos AK, Gogas HJ, Sandilos PH, Uzunoglu NK, Malas EG and Vlahos LJ: Liposomal doxorubicin in conjunction with reirradiation and local hyperthermia treatment in recurrent breast cancer: A phase I/II trial. Clin Cancer Res. 8:374–382. 2002.PubMed/NCBI | |
Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK and Clay TM: Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood. 112:610–618. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, Morgan D, Fan J and Straughn JM Jr: Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 55:1636–1642. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bernal-Estevez DA, Garcia O, Sanchez R and Parra-Lopez CA: Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer. 18:772018. View Article : Google Scholar : PubMed/NCBI | |
Wiseman C, Presant C, Rao R and Smith J: Clinical responses to intralymphatic whole-cell melanoma vaccine augmented by in vitro incubation with alpha-interferon. Ann N Y Acad Sci. 690:388–391. 1993. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, et al: Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 17:4550–4557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L, Hochman T, Shuman N, Axelrod D, Speyer J, et al: Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skipn metastases in patients with breast cancer. Clin Cancer Res. 18:6748–6757. 2012. View Article : Google Scholar : PubMed/NCBI | |
Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, et al: Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 67:1842–1852. 2007. View Article : Google Scholar : PubMed/NCBI | |
Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, et al: A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J Immunother. 35:54–65. 2012. View Article : Google Scholar | |
Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, et al: HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 118:4354–4362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Garnett CT, Schlom J and Hodge JW: Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: Effects of docetaxel on immune enhancement. Clin Cancer Res. 14:3536–3544. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, Jones J, Ferrara T, Heery CR, Arlen PM, et al: A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res. 17:7164–7173. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG and Schlom J: A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res. 59:5800–5807. 1999.PubMed/NCBI | |
Berinstein NL, Karkada M, Morse MA, Nemunaitis JJ, Chatta G, Kaufman H, Odunsi K, Nigam R, Sammatur L, MacDonald LD, et al: First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 10:1562012. View Article : Google Scholar : PubMed/NCBI | |
Robbins PF, Eggensperger D, Qi CF and Schlom J: Definition of the expression of the human carcinoembryonic antigen and non-specific cross-reacting antigen in human breast and lung carcinomas. Int J Cancer. 53:892–897. 1993. View Article : Google Scholar : PubMed/NCBI | |
Madan RA, Arlen PM and Gulley JL: PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin Biol Ther. 7:543–554. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kwa M, Li X, Novik Y, Oratz R, Jhaveri K, Wu J, Gu P, Meyers M, Muggia F, Speyer J, et al: Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer. Breast Cancer Res Treat. 168:57–67. 2018. View Article : Google Scholar | |
Rios-Doria J, Durham N, Wetzel L, Rothstein R, Chesebrough J, Holoweckyj N, Zhao W, Leow CC and Hollingsworth R: Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia. 17:661–670. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R and Zarnani AH: Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J Med Biotechnol. 11:3–23. 2019.PubMed/NCBI | |
Vonderheide RH, Domchek SM and Clark AS: Immunotherapy for breast cancer: What are we missing? Clin Cancer Res. 23:2640–2646. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, et al: Breast cancer neoantigens can induce CD8(+) T-Cell responses and antitumor immunity. Cancer Immunol Res. 5:516–523. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ayoub NM, Al-Shami KM and Yaghan RJ: Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer (Dove Med Press). 11:53–69. 2019.PubMed/NCBI | |
Olopade OI, Grushko TA, Nanda R and Huo D: Advances in breast cancer: Pathways to personalized medicine. Clin Cancer Res. 14:7988–7999. 2008. View Article : Google Scholar : PubMed/NCBI | |
Uma K and Jan FS: HER2 in breast cancer: A review and update. Adv Anat Pathol. 21:100–107. 2014. View Article : Google Scholar | |
Mostafa AA, Codner D, Hirasawa K, Komatsu Y, Young MN, Steimle V and Drover S: Activation of ERα signaling differentially modulates IFN-ү induced HLA-class II expression in breast cancer cells. PLoS One. 9:e873772014. View Article : Google Scholar | |
Rothenberger NJ, Somasundaram A and Stabile LP: The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci. 19:6112018. View Article : Google Scholar : PubMed/NCBI | |
Makhoul I, Atiq M, Alwbari A and Kieber-Emmons T: Breast cancer immunotherapy: An update. Breast Cancer (Auckl). 12:11782234187748022018. View Article : Google Scholar : PubMed/NCBI | |
Johnston SR, Martin LA, Leary A, Head J and Dowsett M: Clinical strategies for rationale combinations of aromatase inhibitors with novel therapies for breast cancer. J Steroid Biochem Mol Biol. 106:180–186. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Li C, Mou C, Dong Y and Tu Y: dbNSFP v4: A comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 12:1032020. View Article : Google Scholar : PubMed/NCBI | |
Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM and Seelow D: MutationTaster2021. Nucleic Acids Res. 49(W1): W446–W451. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shahrouzi P, Forouz F, Mathelier A, Kristensen VN and Duijf PHG: Copy number alterations: A catastrophic orchestration of the breast cancer genome. Trends Mol Med. 30:750–764. 2024. View Article : Google Scholar : PubMed/NCBI | |
Annunziato S, de Ruiter JR, Henneman L, Brambillasca CS, Lutz C, Vaillant F, Ferrante F, Drenth AP, van der Burg E, Siteur B, et al: Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Nat Commun. 10:3972019. View Article : Google Scholar : PubMed/NCBI | |
Kaysudu I, Gungul TB, Atici S, Yilmaz S, Bayram E, Guven G, Cizmecioglu NT, Sahin O, Yesiloz G, Haznedaroglu BZ and Cizmecioglu O: Cholesterol biogenesis is a PTEN-dependent actionable node for the treatment of endocrine therapy-refractory cancers. Cancer Sci. 114:4365–4375. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Dong K, Yang M and Liu J: Network pharmacology-based strategy to investigate the bioactive ingredients and molecular mechanism of Evodia rutaecarpa in colorectal cancer. BMC Complement Med Ther. 23:4332023. View Article : Google Scholar : PubMed/NCBI | |
Pranav P, Palaniyandi T, Baskar G, Ravi M, Rajendran BK, Sivaji A and Ranganathan M: Gene expressions and their significance in organoid cultures obtained from breast cancer patient-derived biopsies. Acta Histochem. 124:1519102022. View Article : Google Scholar : PubMed/NCBI | |
Du XW, Li G, Liu J, Zhang CY, Liu Q, Wang H and Chen TS: Comprehensive analysis of the cancer driver genes in breast cancer demonstrates their roles in cancer prognosis and tumor microenvironment. World J Surg Oncol. 19:2732021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Jin G, Qian J, Yang H, Tang H, Meng X and Li Y: Digital gene expression profiling analysis and its application in the identification of genes associated with improved response to neoadjuvant chemotherapy in breast cancer. World J Surg Oncol. 16:822018. View Article : Google Scholar : PubMed/NCBI | |
Martin V, Cappuzzo F, Mazzucchelli L and Frattini M: HER2 in solid tumors: More than 10 years under the microscope; where are we now? Future Oncol. 10:1469–1486. 2014. View Article : Google Scholar : PubMed/NCBI | |
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI |