Nutraceuticals and herbal extracts: A ray of hope for COVID‑19 and related infections (Review)
- Authors:
- Ahmed Hamza Tahir
- Muhammad Mohsin Javed
- Zahid Hussain
-
Affiliations: Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab 54590, Pakistan, Office of the Registrar, Virtual University of Pakistan, Lahore, Punjab 55150, Pakistan, Institute of Industrial Biotechnology, Government College University, Lahore, Punjab 54000, Pakistan - Published online on: August 31, 2020 https://doi.org/10.3892/ijfn.2020.6
- Article Number: 6
-
Copyright: © Tahir et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020.PubMed/NCBI View Article : Google Scholar | |
Worldometer. COVID-19 Coronavirus Pandemic. Dover, Delaware: uriWorldometers.infosimpleWorldometers.info., 2020 Available online at: uriwww.worldometers.info/coronavirussimplewww.worldometers.info/coronavirus (accessed August 28, 2020). | |
Andersen KG, Rambaut A, Lipkin WI, Holmes EC and Garry RF: The proximal origin of SARS-CoV-2. Nat Med. 26:450–452. 2020.PubMed/NCBI View Article : Google Scholar | |
Contini C, Di Nuzzo M, Barp N, Bonazza A, De Giorgio R, Tognon M and Rubino S: The novel zoonotic COVID-19 pandemic: An expected global health concern. J Infect Dev Ctries. 14:254–264. 2020.PubMed/NCBI View Article : Google Scholar | |
Prada V, Benedetti L, Cocito D, Briani C, Orazio EN, Gallia F, Antonini G, Manganelli F, Fabrizi GM, Germano F, et al: High-dose immunoglobulin pulse therapy and risk of Covid19 infection. J Neurol. 1–3. 2020.doi: 10.1007/s00415-020-10146-5 (Epub ahead of print). PubMed/NCBI View Article : Google Scholar | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020.PubMed/NCBI View Article : Google Scholar | |
Ahmed SS: The coronavirus disease 2019 (COVID-19): A review. J Adv Med Med Res 32: 1-9, 2020. | |
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL and Bhattoa HP: Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 12(988)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang L and Liu Y: Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 92:479–490. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, Liu C and Reiter RJ: COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 250(117583)2020.PubMed/NCBI View Article : Google Scholar | |
Ang L, Lee HW, Kim A, Lee JA, Zhang J and Lee MS: Herbal medicine for treatment of children diagnosed with COVID-19: A review of guidelines. Complement Ther Clin Pract. 39(101174)2020.PubMed/NCBI View Article : Google Scholar | |
Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA and Mubarak MS: Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res: Apr 4, 2020 doi: 10.1002/ptr.6700 (Epub ahead of print). | |
Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, Keum YS and Jeong YJ: Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 22:4049–4054. 2012.PubMed/NCBI View Article : Google Scholar | |
Ashour HM, Elkhatib WF, Rahman MM and Elshabrawy HA: Insights into the recent 2019 novel Coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 9(186)2020.PubMed/NCBI View Article : Google Scholar | |
Chandrasekharan JA, Marginean A and Sharma-Walia N: An insight into the role of arachidonic acid derived lipid mediators in virus associated pathogenesis and malignancies. Prostaglandins Other Lipid Mediat. 126:46–54. 2016.PubMed/NCBI View Article : Google Scholar | |
Innes JK and Calder PC: Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 132:41–48. 2018.PubMed/NCBI View Article : Google Scholar | |
Duvall MG and Levy BD: DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol. 785:144–155. 2016.PubMed/NCBI View Article : Google Scholar | |
Chiurchiù V, Leuti A, Dalli J, Jacobsson A, Battistini L, Maccarrone M and Serhan CN: Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci Transl Med. 8(353ra111)2016.PubMed/NCBI View Article : Google Scholar | |
Ramsden CE: Breathing easier with fish oil-a new approach to preventing asthma? N Engl J Med. 375:2596–2598. 2016.PubMed/NCBI View Article : Google Scholar | |
Das UN: Can bioactive lipids inactivate coronavirus (COVID-19)? Arch Med Res. 51:282–286. 2020.PubMed/NCBI View Article : Google Scholar | |
Velavan TP and Meyer CG: The COVID-19 epidemic. Trop Med Int Health. 25:278–280. 2020.PubMed/NCBI View Article : Google Scholar | |
Victor A: Mathematical predictions for COVID-19 as a global pandemic. Available at SSRN 3555879, 2020. | |
McCartney DM and Byrne DG: Optimisation of Vitamin D status for enhanced immuno-protection against Covid-19. Ir Med J. 113(58)2020.PubMed/NCBI | |
Yalaki Z, Taşar MA, Oney H and Gokceoğlu AU: Comparison of viral agents and Vitamin D levels in children with acute bronchiolitis infection. J Pediatr Inf. 13:e14–e20. 2019. | |
Larkin A and Lassetter J: Vitamin D deficiency and acute lower respiratory infections in children younger than 5 years: Identification and treatment. J Pediatr Health Care. 28:572–582. 2014.PubMed/NCBI View Article : Google Scholar | |
Loeb M, Dang AD, Thiem VD, Thanabalan V, Wang B, Nguyen NB, Tran HTM, Luong TM, Singh P, Smieja M, et al: Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. Influenza Other Respir Viruses. 13:176–183. 2019.PubMed/NCBI View Article : Google Scholar | |
Hemilä H and Chalker E: Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: A meta-regression analysis. J Intensive Care. 8(15)2020.PubMed/NCBI View Article : Google Scholar | |
Hemilä H: Vitamin C and common cold-induced asthma: A systematic review and statistical analysis. Allergy Asthma Clin Immunol. 9(46)2013.PubMed/NCBI View Article : Google Scholar | |
Jeong YJ, Kim JH, Kang JS, Lee WJ and Hwang YI: Mega-dose vitamin C attenuated lung inflammation in mouse asthma model. Anat Cell Biol. 43:294–302. 2010.PubMed/NCBI View Article : Google Scholar | |
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL and McKenzie MJ: Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci. 8(1365)2017.PubMed/NCBI View Article : Google Scholar | |
Guillin OM, Vindry C, Ohlmann T and Chavatte L: Selenium, selenoproteins and viral infection. Nutrients. 11(2101)2019.PubMed/NCBI View Article : Google Scholar | |
Xu J, Gong Y, Sun Y, Cai J, Liu Q, Bao J, Yang J and Zhang Z: Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res. 194:237–243. 2020.PubMed/NCBI View Article : Google Scholar | |
Harthill M: Micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 143:1325–1336. 2011.PubMed/NCBI View Article : Google Scholar | |
Yu L, Sun L, Nan Y and Zhu LY: Protection from H1N1 influenza virus infections in mice by supplementation with selenium: A comparison with selenium-deficient mice. Biol Trace Elem Res. 141:254–261. 2011.PubMed/NCBI View Article : Google Scholar | |
Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C, Xu T and Zhu B: Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int J Nanomedicine. 13:2005–2016. 2018.PubMed/NCBI View Article : Google Scholar | |
Li Y, Lin Z, Gong G, Guo M, Xu T, Wang C, Zhao M, Xia Y, Tang Y, Zhong J, et al: Inhibition of H1N1 influenza virus-induced apoptosis by selenium nanoparticles functionalized with arbidol through ROS-mediated signaling pathways. J Mater Chem B Mater Biol Med. 7:4252–4262. 2019. | |
Kieliszek M and Lipinski B: Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 143(109878)2020.PubMed/NCBI View Article : Google Scholar | |
Wessels I, Maywald M and Rink L: Zinc as a gatekeeper of immune function. Nutrients. 9(1286)2017.PubMed/NCBI View Article : Google Scholar | |
Pae M and Wu D: Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr Res. 41:14–35. 2017.PubMed/NCBI View Article : Google Scholar | |
Barnett JB, Hamer DH and Meydani SN: Low zinc status: A new risk factor for pneumonia in the elderly? Nutr Rev. 68:30–37. 2010.PubMed/NCBI View Article : Google Scholar | |
Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O'Brien KL, Campbell H and Black RE: Global burden of childhood pneumonia and diarrhoea. Lancet. 381:1405–1416. 2013.PubMed/NCBI View Article : Google Scholar | |
Kumar NS, Jayaprakash S and Kavitha D: Low serum Zinc level-a possible Marker of severe pneumonia. J Med Sci Clin Res. 5:21554–21570. 2017. | |
Shah UH, Abu-Shaheen AK, Malik MA, Alam S, Riaz M and Al-Tannir MA: The efficacy of zinc supplementation in young children with acute lower respiratory infections: A randomized double-blind controlled trial. Clin Nutr. 32:193–199. 2013.PubMed/NCBI View Article : Google Scholar | |
Suara RO and Crowe JE: Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother. 48:783–790. 2004.PubMed/NCBI View Article : Google Scholar | |
Truong-Tran AQ, Carter J, Ruffin R and Zalewski PD: New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol. 79:170–177. 2001.PubMed/NCBI View Article : Google Scholar | |
Roscioli E, Jersmann HP, Lester S, Badiei A, Fon A, Zalewski P and Hodge S: Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int J Chron Obstruct Pulmon Dis. 12:3503–3510. 2017.PubMed/NCBI View Article : Google Scholar | |
Darma A, Athiyyah AF, Ranuh RG, Merbawani W, Setyoningrum RA, Hidajat B, Hidayati SN, Endaryanto A and Sudarmo SM: Zinc Supplementation effect on the bronchial cilia length, the number of cilia, and the number of intact bronchial cell in Zinc deficiency rats. Indones Biomed J. 12:78–84. 2020. | |
Woodworth BA, Zhang S, Tamashiro E, Bhargave G, Palmer JN and Cohen NA: Zinc increases ciliary beat frequency in a calcium-dependent manner. Am J Rhinol Allergy. 24:6–10. 2010.PubMed/NCBI View Article : Google Scholar | |
Te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ and van Hemert MJ: Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 6(e1001176)2010.PubMed/NCBI View Article : Google Scholar | |
Kumar A, Kubota Y, Chernov M and Kasuya H: Potential role of Zinc supplementation in prophylaxis and treatment of COVID-19. Med Hypotheses. 144(109848)2020.PubMed/NCBI View Article : Google Scholar | |
Wessling-Resnick M: Crossing the Iron gate: Why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 38:431–458. 2018.PubMed/NCBI View Article : Google Scholar | |
Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, et al: Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol. 88:181–195. 2017.PubMed/NCBI View Article : Google Scholar | |
Jayaweera JAAS, Reyes M and Joseph A: Childhood iron deficiency anemia leads to recurrent respiratory tract infections and gastroenteritis. Sci Rep. 9(12637)2019.PubMed/NCBI View Article : Google Scholar | |
Homma S, Azuma A, Taniguchi H, Ogura T, Mochiduki Y, Sugiyama Y, Nakata K, Yoshimura K, Takeuchi M and Kudoh S: Japan NAC Clinical Study Group: Efficacy of inhaled N-acetylcysteine monotherapy in patients with early stage idiopathic pulmonary fibrosis. Respirology. 17:467–477. 2012.PubMed/NCBI View Article : Google Scholar | |
Blasi F, Page C, Rossolini GM, Pallecchi L, Matera MG, Rogliani P and Cazzola M: The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 117:190–197. 2016.PubMed/NCBI View Article : Google Scholar | |
Cazzola M, Calzetta L, Page C, Jardim J, Chuchalin AG, Rogliani P and Matera MG: Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: A meta-analysis. Eur Respir Rev. 24:451–461. 2015.PubMed/NCBI View Article : Google Scholar | |
Santus P, Corsico A, Solidoro P, Braido F, Di Marco F and Scichilone N: Oxidative stress and respiratory system: Pharmacological and clinical reappraisal of N-acetylcysteine. COPD. 11:705–717. 2014.PubMed/NCBI View Article : Google Scholar | |
Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA and Cortijo J: Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: Effectiveness of N-acetylcysteine. PLoS One. 7(e48037)2012.PubMed/NCBI View Article : Google Scholar | |
Sadowska AM: N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 6:127–135. 2012.PubMed/NCBI View Article : Google Scholar | |
Andreou A, Trantza S, Filippou D, Sipsas N and Tsiodras S: COVID-19: The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. In Vivo. 34:1567–1588. 2020.PubMed/NCBI View Article : Google Scholar | |
Jaiswal N, Bhatnagar M and Shah H: N-acetycysteine: A potential therapeutic agent in COVID-19 infection. Med Hypotheses. 144(110133)2020.PubMed/NCBI View Article : Google Scholar | |
Ohtake S, Arakawa T and Koyama AH: Arginine as a synergistic virucidal agent. Molecules. 15:1408–1424. 2010.PubMed/NCBI View Article : Google Scholar | |
Meingast C and Heldt CL: Arginine-enveloped virus inactivation and potential mechanisms. Biotechnol Prog. 36(e2931)2020.PubMed/NCBI View Article : Google Scholar | |
Tsujimoto K, Uozaki M, Ikeda K, Yamazaki H, Utsunomiya H, Ichinose M, Koyama AH and Arakawa T: Solvent-induced virus inactivation by acidic arginine solution. Int J Mol Med. 25:433–437. 2010.PubMed/NCBI View Article : Google Scholar | |
Yamasaki H, Tsujimoto K, Koyama AH, Ejima D and Arakawa T: Arginine facilitates inactivation of enveloped viruses. J Pharm Sci. 97:3067–3073. 2008.PubMed/NCBI View Article : Google Scholar | |
Ikeda K, Yamasaki H, Minami S, Suzuki Y, Tsujimoto K, Sekino Y, Irie H, Arakawa T and Koyama AH: Arginine inactivates human herpesvirus 2 and inhibits genital herpesvirus infection. Int J Mol Med. 30:1307–1312. 2012.PubMed/NCBI View Article : Google Scholar | |
Ikeda K, Yamasaki H, Suzuki Y, Koyama AH and Arakawa T: Novel strategy with acidic arginine solution for the treatment of influenza A virus infection. Exp Ther Med. 1:251–256. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhang R, Kubo M, Murakami I, Setiawan H, Takemoto K, Inoue K, Fujikura Y and Ogino K: l-Arginine administration attenuates airway inflammation by altering l-arginine metabolism in an NC/Nga mouse model of asthma. J Clin Biochem Nutr. 56:201–207. 2015.PubMed/NCBI View Article : Google Scholar | |
Pierre JF, Heneghan AF, Lawson CM, Wischmeyer PE, Kozar RA and Kudsk KA: Pharmaconutrition review: Physiological mechanisms. JPEN J Parenter Enteral Nutr. 37 (5 Suppl):51S–65S. 2013.PubMed/NCBI View Article : Google Scholar | |
Lee CH, Kim HK, Kim JM, Ayush O, Im SY, Oh DK and Lee HK: Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A(2) via an induction of MAPK phosphatase-1. J Immunol. 189:5139–5146. 2012.PubMed/NCBI View Article : Google Scholar | |
Lai CC, Liu WL and Chen CM: Glutamine attenuates acute lung injury caused by acid aspiration. Nutrients. 6:3101–3116. 2014.PubMed/NCBI View Article : Google Scholar | |
Oliveira GP, De Abreu MG, Pelosi P and Rocco PR: Exogenous glutamine in respiratory diseases: Myth or reality? Nutrients. 8(76)2016.PubMed/NCBI View Article : Google Scholar | |
Romano L, Bilotta F, Dauri M, Macheda S, Pujia A, De Santis GL, Tarsitano MG, Merra G, Di Renzo L, Esposito E and De Lorenzo A: Short report-medical nutrition therapy for critically ill patients with COVID-19. Eur Rev Med Pharmacol Sci. 24:4035–4039. 2020.PubMed/NCBI View Article : Google Scholar | |
West NP, Horn PL, Pyne DB, Gebski VJ, Lahtinen SJ, Fricker PA and Cripps AW: Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin Nutr. 33:581–587. 2014.PubMed/NCBI View Article : Google Scholar | |
Maldonado J, Cañabate F, Sempere L, Vela F, Sánchez AR, Narbona E, López-Huertas E, Geerlings A, Valero AD, Olivares M and Lara-Villoslada F: Human milk probiotic Lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 54:55–61. 2012.PubMed/NCBI View Article : Google Scholar | |
Ozen M, Kocabas Sandal G and Dinleyici EC: Probiotics for the prevention of pediatric upper respiratory tract infections: A systematic review. Expert Opin Biol Ther. 15:9–20. 2015.PubMed/NCBI View Article : Google Scholar | |
Strasser B, Geiger D, Schauer M, Gostner JM, Gatterer H, Burtscher M and Fuchs D: Probiotic supplements beneficially affect tryptophan-kynurenine metabolism and reduce the incidence of upper respiratory tract infections in trained athletes: A randomized, double-blinded, placebo-controlled trial. Nutrients. 8(752)2016.PubMed/NCBI View Article : Google Scholar | |
Hor YY, Lew LC, Lau ASY, Ong JS, Chuah LO, Lee YY, Choi SB, Rashid F, Wahid N, Sun Z, et al: Probiotic Lactobacillus casei Zhang (LCZ) alleviates respiratory, gastrointestinal & RBC abnormality via immuno-modulatory, anti-inflammatory & anti-oxidative actions. J Funct Foods. 44:235–245. 2018. | |
Kitazawa H and Villena J: Modulation of respiratory TLR3-anti-viral response by probiotic microorganisms: Lessons learned from Lactobacillus rhamnosus CRL1505. Front Immunol. 5(201)2014.PubMed/NCBI View Article : Google Scholar | |
Eguchi K, Fujitani N, Nakagawa H and Miyazaki T: Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep. 9(4812)2019.PubMed/NCBI View Article : Google Scholar | |
Kang EJ, Kim SY, Hwang IH and Ji YJ: The effect of probiotics on prevention of common cold: A meta-analysis of randomized controlled trial studies. Korean J Fam Med. 34:2–10. 2013.PubMed/NCBI View Article : Google Scholar | |
Mak JWY, Chan FKL and Ng SC: Probiotics and COVID-19: One size does not fit all. Lancet Gastroenterol Hepatol. 5:644–645. 2020.PubMed/NCBI View Article : Google Scholar | |
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C and Ranasinghe P: Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 14:367–382. 2020.PubMed/NCBI View Article : Google Scholar | |
Morais AHA, Passos TS, Maciel BLL and da Silva-Maia JK: Can probiotics and diet promote beneficial immune modulation and purine control in coronavirus infection? Nutrients. 12(1737)2020.PubMed/NCBI View Article : Google Scholar | |
Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, Ceccarelli G, Santinelli L, Cavarretta E, Marullo AGM, et al: Diet supplementation, probiotics, and Nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients. 12(1718)2020.PubMed/NCBI View Article : Google Scholar | |
Baud D, Agri VD, Gibson GR, Reid G and Giannoni E: Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 8(186)2020.PubMed/NCBI View Article : Google Scholar | |
Ibarguren M, López DJ and Escribá PV: The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta. 1838:1518–1528. 2014.PubMed/NCBI View Article : Google Scholar | |
Thom G and Lean M: Is there an optimal diet for weight management and metabolic health? Gastroenterology. 152:1739–1751. 2017.PubMed/NCBI View Article : Google Scholar | |
Lemoine S CM, Brigham EP, Woo H, Hanson CK, McCormack MC, Koch A, Putcha N and Hansel NN: Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD. BMC Pulm Med. 19(97)2019.PubMed/NCBI View Article : Google Scholar | |
Escamilla-Nuñez MC, Barraza-Villarreal A, Hernández-Cadena L, Navarro-Olivos E, Sly PD and Romieu I: Omega-3 fatty acid supplementation during pregnancy and respiratory symptoms in children. Chest. 146:373–382. 2014.PubMed/NCBI View Article : Google Scholar | |
Singer P and Shapiro H: Enteral omega-3 in acute respiratory distress syndrome. Curr Opin Clin Nutr Metab Care. 12:123–128. 2009.PubMed/NCBI View Article : Google Scholar | |
Abidi A, Kourda N, Feki M and Ben Khamsa S: Protective effect of Tunisian flaxseed oil against bleomycin-induced pulmonary fibrosis in rats. Nutr Cancer. 72:226–238. 2020.PubMed/NCBI View Article : Google Scholar | |
Whyand T, Hurst JR, Beckles M and Caplin ME: Pollution and respiratory disease: Can diet or supplements help? A review. Respir Res. 19(79)2018.PubMed/NCBI View Article : Google Scholar | |
Knapp HR: Omega-3 fatty acids in respiratory diseases: A review. J Am Coll Nutr. 14:18–23. 1995.PubMed/NCBI View Article : Google Scholar | |
Miyata J and Arita M: Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol Int. 64:27–34. 2015.PubMed/NCBI View Article : Google Scholar | |
Yates CM, Calder PC and Rainger GE: Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 141:272–282. 2014.PubMed/NCBI View Article : Google Scholar | |
Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S, et al: The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 153:112–125. 2013.PubMed/NCBI View Article : Google Scholar | |
Linday LA, Shindledecker RD, Tapia-Mendoza J and Dolitsky JN: Effect of daily cod liver oil and a multivitamin-mineral supplement with selenium on upper respiratory tract pediatric visits by young, inner-city, Latino children: Randomized pediatric sites. Ann Otol Rhinol Laryngol. 113:891–901. 2004.PubMed/NCBI View Article : Google Scholar | |
Da Boit M, Gabriel BM, Gray P and Gray SR: The effect of fish oil, vitamin D and protein on URTI incidence in young active people. Int J Sports Med. 36:426–430. 2015.PubMed/NCBI View Article : Google Scholar | |
Philpott JD, Witard OC and Galloway SD: Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res Sports Med. 27:219–237. 2019.PubMed/NCBI View Article : Google Scholar | |
Langlois PL, D'Aragon F, Hardy G and Manzanares W: Omega-3 polyunsaturated fatty acids in critically ill patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Nutrition. 61:84–92. 2019.PubMed/NCBI View Article : Google Scholar | |
Calder PC: Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem Soc Trans. 45:1105–1115. 2017.PubMed/NCBI View Article : Google Scholar | |
Imai Y: Role of omega-3 PUFA-derived mediators, the protectins, in influenza virus infection. Biochim Biophys Acta. 1851:496–502. 2015.PubMed/NCBI View Article : Google Scholar | |
Messina G, Polito R, Monda V, Cipolloni L, Di Nunno N, Di Mizio G, Murabito P, Carotenuto M, Messina A, Pisanelli D, et al: Functional role of dietary intervention to improve the outcome of COVID-19: A hypothesis of work. Int J Mol Sci. 21(3104)2020.PubMed/NCBI View Article : Google Scholar | |
Hammock BD, Wang W, Gilligan MM and Panigrahy D: Eicosanoids: The overlooked storm in COVID-19? Am J Pathol. 190:1782–1788. 2020.PubMed/NCBI View Article : Google Scholar | |
Torrinhas RS, Calder PC, Lemos GO and Waitzberg DL: Parenteral fish oil, an adjuvant pharmacotherapy for COVID-19? Nutrition. 81(110900)2020.PubMed/NCBI View Article : Google Scholar | |
De Marco Castro E, Calder PC and Roche HM: β-1,3/1,6-glucans and immunity: State of the art and future directions. Mol Nutr Food Res. (e1901071)2020.doi: 10.1002/mnfr.201901071 (Epub ahead of print). | |
Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van Rooijen N, Ghaffar A and Mayer EP: Benefits of oat β-glucan on respiratory infection following exercise stress: Role of lung macrophages. Am J Physiol Regul Integr Comp Physiol. 294:R1593–R1599. 2008.PubMed/NCBI View Article : Google Scholar | |
Dharsono T, Rudnicka K, Wilhelm M and Schoen C: Effects of yeast (1,3)-(1,6)-beta-glucan on severity of upper respiratory tract infections: a double-blind, randomized, placebo-controlled study in healthy subjects. J Am Coll Nutr. 38:40–50. 2019.PubMed/NCBI View Article : Google Scholar | |
Jesenak M, Urbancikova I and Banovcin P: Respiratory tract infections and the role of biologically active polysaccharides in their management and prevention. Nutrients. 9(779)2017.PubMed/NCBI View Article : Google Scholar | |
Talbott S and Talbott J: Effect of BETA 1, 3/1, 6 GLUCAN on upper respiratory tract infection symptoms and mood state in marathon athletes. J Sports Sci Med. 8:509–515. 2009.PubMed/NCBI | |
Urbancikova I, Hudackova D, Majtan J, Rennerova Z, Banovcin P and Jesenak M: Efficacy of Pleuran (β-Glucan from Pleurotus ostreatus) in the management of herpes simplex virus type 1 infection. Evid Based Complement Alternat Med. 2020(8562309)2020.PubMed/NCBI View Article : Google Scholar | |
Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A and Mayer EP: Effects of oat β-glucan on the macrophage cytokine response to herpes simplex virus 1 infection in vitro. J Interferon Cytokine Res. 32:362–367. 2012.PubMed/NCBI View Article : Google Scholar | |
Muramatsu D, Iwai A, Aoki S, Uchiyama H, Kawata K, Nakayama Y, Nikawa Y, Kusano K, Okabe M and Miyazaki T: β-glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS One. 7(e41399)2012.PubMed/NCBI View Article : Google Scholar | |
Vetvicka V and Vetvickova J: Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann Transl Med. 3(22)2015.PubMed/NCBI View Article : Google Scholar | |
Geller A and Yan J: Could the induction of trained immunity by β-Glucan serve as a defense against COVID-19? Front Immunol. 11(1782)2020.PubMed/NCBI View Article : Google Scholar | |
Murphy EJ, Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, Lynch M, Laffey JG and Rowan NJ: β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects-Implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 732(139330)2020.PubMed/NCBI View Article : Google Scholar | |
Singh S, Sharma B, Kanwar SS and Kumar A: Lead phytochemicals for anticancer drug development. Front Plant Sci. 7(1667)2016.PubMed/NCBI View Article : Google Scholar | |
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG and Lightfoot DA: Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 6(42)2017.PubMed/NCBI View Article : Google Scholar | |
Prasanna G, Ujwal A, Diliprajudominic S, Marimuthu T and Saraswathi NT: A new pipeline to discover antimycotics by inhibiting ergosterol and riboflavin synthesis: The inspirations of Siddha medicine. Med Chem Res. 23:2651–2658. 2014. | |
Oliveira AF, Teixeira RR, Oliveira ASD, Souza AP, Silva MLD and Paula SO: Potential Antivirals: Natural products targeting replication enzymes of dengue and chikungunya viruses. Molecules. 22(505)2017.PubMed/NCBI View Article : Google Scholar | |
Lin LT, Hsu WC and Lin CC: Antiviral natural products and herbal medicines. J Tradit Complement Med. 4:24–35. 2014.PubMed/NCBI View Article : Google Scholar | |
Cheng PW, Ng LT, Chiang LC and Lin CC: Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 33:612–616. 2006.PubMed/NCBI View Article : Google Scholar | |
Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, Lee MY, Au SW, Cheng CH, Lau CB, et al: Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 118:79–85. 2008.PubMed/NCBI View Article : Google Scholar | |
Maree JE and Viljoen AM: Phytochemical distinction between Pelargonium sidoides and Pelargonium reniforme-A quality control perspective. S Afr J Bot. 82:83–91. 2012. | |
Careddu D and Pettenazzo A: Pelargonium sidoides extract EPs 7630: A review of its clinical efficacy and safety for treating acute respiratory tract infections in children. Int J Gen Med. 11:91–98. 2018.PubMed/NCBI View Article : Google Scholar | |
Baars EW, Zoen EBV, Breitkreuz T, Martin D, Matthes H, von Schoen-Angerer T, Soldner G, Vagedes J, van Wietmarschen H, Patijn O, et al: The contribution of complementary and alternative medicine to reduce antibiotic use: A narrative review of health concepts, prevention, and treatment strategies. Evid Based Complement Alternat Med. 2019(5365608)2019.PubMed/NCBI View Article : Google Scholar | |
Michaelis M, Doerr HW and Cinatl J Jr: Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine. 18:384–386. 2011.PubMed/NCBI View Article : Google Scholar | |
Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D and Bielenberg J: Antiviral effects of Glycyrrhiza species. Phytother Res. 22:141–148. 2008.PubMed/NCBI View Article : Google Scholar | |
Feng Yeh C, Wang KC, Chiang LC, Shieh DE, Yen MH and San Chang J: Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 148:466–473. 2013.PubMed/NCBI View Article : Google Scholar | |
Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA and Anwar F: A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 3:337–352. 2013.PubMed/NCBI View Article : Google Scholar | |
Dajani EZ, Shahwan TG and Dajani NE: Overview of the preclinical pharmacological properties of Nigella sativa (black seeds): A complementary drug with historical and clinical significance. J Physiol Pharmacol. 67:801–817. 2016.PubMed/NCBI | |
Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J and Xiao PG: Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 67:18–23. 2005.PubMed/NCBI View Article : Google Scholar | |
Cui JD: Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol. 35:475–484. 2015.PubMed/NCBI View Article : Google Scholar | |
Ashraf SA, Elkhalifa AE, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M and Hadi S: Cordycepin for health and wellbeing: A Potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules. 25(2735)2020.PubMed/NCBI View Article : Google Scholar | |
Daba G: The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi J Nat Prod Biochem. 18:70–77. 2020. | |
Yang M, Shang YX, Tian ZY, Xiong M, Lu CL, Jiang Y, Zhang Y, Zhang YY, Jin XY, Jin QB, et al: Characteristics of registered studies for Coronavirus disease 2019 (COVID-19): A systematic review. Integr Med Res. 9(100426)2020.PubMed/NCBI View Article : Google Scholar | |
Boone HA, Medunjanin D and Sijerčić A: Review on potential of phytotherapeutics in fight against COVID-19. Int J Innov Sci Res Technol. 5:481–491. 2020. | |
Suwannarach N, Kumla J, Sujarit K, Pattananandecha T, Saenjum C and Lumyong S: Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules. 25(1800)2020.PubMed/NCBI View Article : Google Scholar | |
Umesh Kundu D, Selvaraj C, Singh SK and Dubey VK: Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn. 1–9. 2020.doi: 10.1080/07391102.2020.1763202 (Epub ahead of print). PubMed/NCBI View Article : Google Scholar | |
Paintsil E and Cheng YC: Antiviral agents. Encyclopedia Microbiology. 176–225. 2019.doi: 10.1016/B978-0-12-801238-3.02387-4. | |
Xing Y, Mo P, Xiao Y, Zhao O, Zhang Y and Wang F: Post-discharge surveillance and positive virus detection in two medical staff recovered from coronavirus disease 2019 (COVID-19), China, January to February 2020. Euro Surveill. 25(2000191)2020.PubMed/NCBI View Article : Google Scholar |