Methodology for the biofunctional assessment of honey (Review)
- Authors:
- Ioannis D. Kyriazis
- Zoi Skaperda
- Fotios Tekos
- Sotiria Makri
- Periklis Vardakas
- Eleni Vassi
- Anastasia Patouna
- Kallirroi Terizi
- Christos Angelakis
- Demetrios Kouretas
-
Affiliations: Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece - Published online on: March 26, 2021 https://doi.org/10.3892/ijfn.2021.15
- Article Number: 5
-
Copyright: © Kyriazis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Olson DM and Dinerstein E: The Global 200: Priority ecoregions for global conservation. JSTOR 89: 199-224. |
|
Medail F and Quezel P: Hot-spots analysis for conservation of plant biodiversity in the mediterranean basin. Ann Mo Bot Gard. 84:112–127. 1997. |
|
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA and Kent J: Biodiversity hotspots for conservation priorities. Nature. 403:853–858. 2000.PubMed/NCBI View Article : Google Scholar |
|
Georghiou K and Delipetrou P: Patterns and traits of the endemic plants of Greece. Bot J Linn Soc. 162:130–422. 2010. |
|
Djoussé L, Ellison RC, Beiser A, Scaramucci A, D'Agostino RB and Wolf PA: Alcohol consumption and risk of ischemic stroke: The Framingham Study. Stroke. 33:907–912. 2002.PubMed/NCBI View Article : Google Scholar |
|
Lucas DL, Brown RA, Wassef M and Giles TD: Alcohol and the cardiovascular system: Research challenges and opportunities. J Am Coll Cardiol. 45:1916–1924. 2005.PubMed/NCBI View Article : Google Scholar |
|
Ferrières J: The French paradox: Lessons for other countries. Heart. 90:107–111. 2004.PubMed/NCBI View Article : Google Scholar |
|
Vidavalur R, Otani H, Singal PK and Maulik N: Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol. 11:217–225. 2006.PubMed/NCBI |
|
Catalgol B, Batirel S, Taga Y and Ozer NK: Resveratrol: French paradox revisited. Front Pharmacol. 3(141)2012.PubMed/NCBI View Article : Google Scholar |
|
Catalgol B and Ozer NK: Protective effects of vitamin E against hypercholesterolemia-induced age-related diseases. Genes Nutr. 7:91–98. 2012.PubMed/NCBI View Article : Google Scholar |
|
Bueno-Costa FM, Zambiazi RC, Bohmer BW, Chaves FC, Silva WP, Zanusso JT and Dutra I: Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. Lebensm Wiss Technol. 65:333–340. 2016. |
|
Al-Waili NS: Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: Comparison with dextrose and sucrose. J Med Food. 7:100–107. 2004.PubMed/NCBI View Article : Google Scholar |
|
Othman Z, Zakaria R, Hussain NHN, Hassan A, Shafin N, Al-Rahbi B and Ahmad AH: Potential role of honey in learning and memory. Med Sci (Basel). 3:3–15. 2015.PubMed/NCBI View Article : Google Scholar |
|
Al-Himyari FA: P1-241: The use of honey as a natural preventive therapy of cognitive decline and dementia in the middle east. Alzheimers Dement. 5:247–P247. 2009. |
|
Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS and Gurtu S: Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Ann Endocrinol (Paris). 71:291–296. 2010.PubMed/NCBI View Article : Google Scholar |
|
Kishore RK, Halim AS, Syazana MS and Sirajudeen KN: Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr Res. 31:322–325. 2011.PubMed/NCBI View Article : Google Scholar |
|
Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J and Pérez-Alvarez JA: Functional properties of honey, propolis, and royal jelly. J Food Sci. 73:R117–R124. 2008.PubMed/NCBI View Article : Google Scholar |
|
Carroll MJ, Brown N, Goodall C, Downs AM, Sheenan TH and Anderson KE: Honey bees preferentially consume freshly-stored pollen. PLoS One. 12(e0175933)2017.PubMed/NCBI View Article : Google Scholar |
|
Nisbet C, Kazak F and Ardalı Y: Determination of quality criteria that allow differentiation between honey adulterated with sugar and pure honey. Biol Trace Elem Res. 186:288–293. 2018.PubMed/NCBI View Article : Google Scholar |
|
Tosti V, Bertozzi B and Fontana L: Health benefits of the mediterranean diet: Metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci. 73:318–326. 2018.PubMed/NCBI View Article : Google Scholar |
|
Dröge W: Free radicals in the physiological control of cell function. Physiol Rev. 82:47–95. 2002.PubMed/NCBI View Article : Google Scholar |
|
Pham-Huy LA, He H and Pham-Huy C: Free radicals, antioxidants in disease and health. Int J Biomed Sci. 4:89–96. 2008.PubMed/NCBI |
|
Cadenas E and Sies H: Oxidative stress: Excited oxygen species and enzyme activity. Adv Enzyme Regul. 23:217–237. 1985.PubMed/NCBI View Article : Google Scholar |
|
Sies H and Cadenas E: Oxidative stress: Damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 311:617–631. 1985.PubMed/NCBI View Article : Google Scholar |
|
Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015.PubMed/NCBI View Article : Google Scholar |
|
Halliwell B: The wanderings of a free radical. Free Radic Biol Med. 46:531–542. 2009.PubMed/NCBI View Article : Google Scholar |
|
Kruk J, Aboul-Enein HY, Kładna A and Bowser JE: Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic Res. 53:497–521. 2019.PubMed/NCBI View Article : Google Scholar |
|
Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM and Harman D: Oxygen radicals and human disease. Ann Intern Med. 107:526–545. 1987.PubMed/NCBI View Article : Google Scholar |
|
Cooke MS, Evans MD, Dizdaroglu M and Lunec J: Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 17:1195–1214. 2003.PubMed/NCBI View Article : Google Scholar |
|
Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S and Suleria HA: Natural polyphenols: An overview. Int J Food Prop. 20:1689–1699. 2017. |
|
Belščak-Cvitanović A, Durgo K, Huđek A, Bačun-Družina V and Komes D: Overview of polyphenols and their properties. In: Polyphenols: Properties, Recovery, and Applications. Galanakis CM (ed). Woodhead Publishing, pp3-44, 2018. |
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, et al: Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol. 110:286–299. 2017.PubMed/NCBI View Article : Google Scholar |
|
Shahidi F and Yeo J: Bioactivities of phenolics by focusing on suppression of chronic diseases: A Review. Int J Mol Sci. 19(19)2018.PubMed/NCBI View Article : Google Scholar |
|
Ciulu M, Solinas S, Floris I, Panzanelli A, Pilo MI, Piu PC, Spano N and Sanna G: RP-HPLC determination of water-soluble vitamins in honey. Talanta. 83:924–929. 2011.PubMed/NCBI View Article : Google Scholar |
|
Padayatty SJ and Levine M: Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 22:463–493. 2016.PubMed/NCBI View Article : Google Scholar |
|
Grosso G, Bei R, Mistretta A, Marventano S, Calabrese G, Masuelli L, Giganti MG, Modesti A, Galvano F and Gazzolo D: Effects of vitamin C on health: A review of evidence. Front Biosci. 18:1017–1029. 2013.PubMed/NCBI View Article : Google Scholar |
|
Pisoschi AM, Pop A, Cimpeanu C and Predoi G: Antioxidant capacity determination in plants and plant-derived products: A review. Oxid Med Cell Longev. 2016(9130976)2016.PubMed/NCBI View Article : Google Scholar |
|
Prior RL, Wu X and Schaich K: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 53:4290–4302. 2005.PubMed/NCBI View Article : Google Scholar |
|
Amorati R and Valgimigli L: Advantages and limitations of common testing methods for antioxidants. Free Radic Res. 49:633–649. 2015.PubMed/NCBI View Article : Google Scholar |
|
Granato D, Santos JS, Maciel LG and Nunes DS: Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. Trends Analyt Chem. 80:266–279. 2016. |
|
Blainski A, Lopes GC and de Mello JC: Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules. 18:6852–6865. 2013.PubMed/NCBI View Article : Google Scholar |
|
Kouka P, Priftis A, Stagos D, Angelis A, Stathopoulos P, Xinos N, Skaltsounis AL, Mamoulakis C, Tsatsakis AM, Spandidos DA, et al: Assessment of the antioxidant activity of an olive oil total polyphenolic fraction and hydroxytyrosol from a Greek Olea europea variety in endothelial cells and myoblasts. Int J Mol Med. 40:703–712. 2017.PubMed/NCBI View Article : Google Scholar |
|
Kouka P, Tekos F, Valta K, Mavros P, Veskoukis AS, Angelis A, Skaltsounis AL and Kouretas D: Οlive tree blossom polyphenolic extracts exert antioxidant and antimutagenic activities in vitro and in various cell lines. Oncol Rep. 42:2814–2825. 2019.PubMed/NCBI View Article : Google Scholar |
|
Gao MR, Xu QD, He Q, Sun Q and Zeng WC: A theoretical and experimental study: The influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay. J Food Meas Charact. 13:1349–1356. 2019. |
|
Bertoncelj J, Doberšek U, Jamnik M and Golob T: Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 105:822–828. 2007. |
|
Pontis JA, Costa LA, Silva SJ and Flach A: Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci Technol (Campinas). 34:69–73. 2014. |
|
Singleton VL, Orthofer R and Lamuela-Raventós RM: Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology Academic Press, pp152-178, 1999. |
|
Brand-Williams W, Cuvelier ME and Berset C: Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol. 28:25–30. 1995. |
|
Arnao MB, Cano A, Alcolea JF and Acosta M: Estimation of free radical-quenching activity of leaf pigment extracts. Phytochem Anal. 12:138–143. 2001.PubMed/NCBI View Article : Google Scholar |
|
Kim DO, Lee KW, Lee HJ and Lee CY: Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem. 50:3713–3717. 2002.PubMed/NCBI View Article : Google Scholar |
|
Fahey JW and Stephenson KK: Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): A potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem. 50:7472–7476. 2002.PubMed/NCBI View Article : Google Scholar |
|
Barciszewski J, Barciszewska MZ, Siboska G, Rattan SI and Clark BF: Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Rep. 26:231–238. 1999.PubMed/NCBI View Article : Google Scholar |
|
Chung SK, Osawa T and Kawakishi S: Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem. 61:118–123. 1997. |
|
Gülçin I, Küfrevioglu OI, Oktay M and Büyükokuroglu ME: Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol. 90:205–215. 2004.PubMed/NCBI View Article : Google Scholar |
|
Nair U, Bartsch H and Nair J: Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic Biol Med. 43:1109–1120. 2007.PubMed/NCBI View Article : Google Scholar |
|
Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE and Marnett LJ: Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem. 278:31426–31433. 2003.PubMed/NCBI View Article : Google Scholar |
|
Cadet J, Douki T, Gasparutto D and Ravanat JL: Oxidative damage to DNA: Formation, measurement and biochemical features. Mutat Res. 531:5–23. 2003.PubMed/NCBI View Article : Google Scholar |
|
Kontoghiorghes GJ and Kontoghiorghe CN: Iron and chelation in biochemistry and medicine: New approaches to controlling iron metabolism and treating related diseases. Cells. 9(9)2020.PubMed/NCBI View Article : Google Scholar |
|
Yen GC and Duh PD: Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem. 42:629–632. 1994. |
|
Stagos D, Balabanos D, Savva S, Skaperda Z, Priftis A, Kerasioti E, Mikropoulou EV, Vougogiannopoulou K, Mitakou S, Halabalaki M, et al: Extracts from the Mediterranean food Plants Carthamus lanatus, Cichorium intybus, and Cichorium spinosum enhanced GSH levels and increased Nrf2 expression in human endothelial cells. Oxid Med Cell Longev. 2018(6594101)2018.PubMed/NCBI View Article : Google Scholar |
|
Kouka P, Tsakiri G, Tzortzi D, Dimopoulou S, Sarikaki G, Stathopoulos P, Veskoukis AS, Halabalaki M, Skaltsounis AL and Kouretas D: The polyphenolic composition of extracts derived from different greek extra virgin olive oils is correlated with their antioxidant potency. Oxid Med Cell Longev. 2019(1870965)2019.PubMed/NCBI View Article : Google Scholar |
|
Priftis A, Stagos D, Konstantinopoulos K, Tsitsimpikou C, Spandidos DA, Tsatsakis AM, Tzatzarakis MN and Kouretas D: Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep. 12:7293–7302. 2015.PubMed/NCBI View Article : Google Scholar |
|
Morita M, Naito Y, Yoshikawa T and Niki E: Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine. Redox Biol. 8:127–135. 2016.PubMed/NCBI View Article : Google Scholar |
|
Saito K, Matsuoka Y and Yamada KI: Reaction targets of antioxidants in azo-initiator or lipid hydroperoxide induced lipid peroxidation. Free Radic Res. 54:301–310. 2020.PubMed/NCBI View Article : Google Scholar |
|
Higgins NP and Vologodskii AV: Topological behavior of plasmid DNA. Microbiol Spectr. 3(3)2015.PubMed/NCBI View Article : Google Scholar |
|
Szatrowski TP and Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51:794–798. 1991.PubMed/NCBI |
|
Mittler R: ROS are good. Trends Plant Sci. 22:11–19. 2017.PubMed/NCBI View Article : Google Scholar |
|
Poljsak B, Šuput D and Milisav I: Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013(956792)2013.PubMed/NCBI View Article : Google Scholar |
|
Doba T, Burton GW and Ingold KU: Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim Biophys Acta. 835:298–303. 1985.PubMed/NCBI View Article : Google Scholar |
|
Cheli F and Baldi A: Nutrition-based health: Cell-based bioassays for food antioxidant activity evaluation. J Food Sci. 76:R197–R205. 2011.PubMed/NCBI View Article : Google Scholar |
|
Liu RH and Finley J: Potential cell culture models for antioxidant research. J Agric Food Chem. 53:4311–4314. 2005.PubMed/NCBI View Article : Google Scholar |
|
Lyapun IN, Andryukov BG and Bynina MP: HeLa cell culture: Immortal heritage of henrietta lacks. Mol Gen Microbiol Virol. 34:195–200. 2019. |
|
Sassa S, Sugita O, Galbraith RA and Kappas A: Drug metabolism by the human hepatoma cell, Hep G2. Biochem Biophys Res Commun. 143:52–57. 1987.PubMed/NCBI View Article : Google Scholar |
|
Bouma ME, Rogier E, Verthier N, Labarre C and Feldmann G: Further cellular investigation of the human hepatoblastoma-derived cell line HepG2: Morphology and immunocytochemical studies of hepatic-secreted proteins. In Vitro Cell Dev Biol. 25:267–275. 1989.PubMed/NCBI View Article : Google Scholar |
|
Pan XP and Li LJ: Advances in cell sources of hepatocytes for bioartificial liver. Hepatobiliary Pancreat Dis Int. 11:594–605. 2012.PubMed/NCBI View Article : Google Scholar |
|
Lima CF, Fernandes-Ferreira M and Pereira-Wilson C: Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels. Life Sci. 79:2056–2068. 2006.PubMed/NCBI View Article : Google Scholar |
|
Murota K and Terao J: Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch Biochem Biophys. 417:12–17. 2003.PubMed/NCBI View Article : Google Scholar |
|
During A, Dawson HD and Harrison EH: Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J Nutr. 135:2305–2312. 2005.PubMed/NCBI View Article : Google Scholar |
|
Rodriguez-Amaya DB: Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids - A review. J Food Compos Anal. 23:726–740. 2010. |
|
Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D and Boyd MR: Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48:4827–4833. 1988.PubMed/NCBI |
|
Meshulam T, Levitz SM, Christin L and Diamond RD: A simplified new assay for assessment of fungal cell damage with the tetrazolium dye, (2,3)-bis-(2-methoxy-4-nitro-5-sulphen l)-(2H)-tetrazolium-5-carboxanil ide (XTT). J Infect Dis. 172:1153–1156. 1995.PubMed/NCBI View Article : Google Scholar |
|
Kerasioti E, Stagos D, Georgatzi V, Bregou E, Priftis A, Kafantaris I and Kouretas D: Antioxidant effects of sheep whey protein on endothelial cells. Oxid Med Cell Longev. 2016(6585737)2016.PubMed/NCBI View Article : Google Scholar |
|
Goutzourelas N, Stagos D, Demertzis N, Mavridou P, Karterolioti H, Georgadakis S, Kerasioti E, Aligiannis N, Skaltsounis L, Statiri A, et al: Effects of polyphenolic grape extract on the oxidative status of muscle and endothelial cells. Hum Exp Toxicol. 33:1099–1112. 2014.PubMed/NCBI View Article : Google Scholar |
|
Goutzourelas N, Stagos D, Spanidis Y, Liosi M, Apostolou A, Priftis A, Haroutounian S, Spandidos DA, Tsatsakis AM and Kouretas D: Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells. Mol Med Rep. 12:5846–5856. 2015.PubMed/NCBI View Article : Google Scholar |
|
Priftis A, Panagiotou EM, Lakis K, Plika C, Halabalaki M, Ntasi G, Veskoukis AS, Stagos D, Skaltsounis LA and Kouretas D: Roasted and green coffee extracts show antioxidant and cytotoxic activity in myoblast and endothelial cell lines in a cell specific manner. Food Chem Toxicol. 114:119–127. 2018.PubMed/NCBI View Article : Google Scholar |
|
Bajic VP, Van Neste C, Obradovic M, Zafirovic S, Radak D, Bajic VB, Essack M and Isenovic ER: Glutathione ‘Redox Homeostasis’ and its relation to cardiovascular disease. Oxid Med Cell Longev. 2019(5028181)2019.PubMed/NCBI View Article : Google Scholar |
|
McLennan HR and Degli Esposti M: The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr. 32:153–162. 2000.PubMed/NCBI View Article : Google Scholar |
|
Asghar K, Reddy BG and Krishna G: Histochemical localization of glutathione in tissues. J Histochem Cytochem. 23:774–779. 1975.PubMed/NCBI View Article : Google Scholar |
|
Larrauri A, López P, Gómez-Lechón MJ and Castell JV: A cytochemical stain for glutathione in rat hepatocytes cultured on plastic. J Histochem Cytochem. 35:271–274. 1987.PubMed/NCBI View Article : Google Scholar |
|
Davey MW, Stals E, Panis B, Keulemans J and Swennen RL: High-throughput determination of malondialdehyde in plant tissues. Anal Biochem. 347:201–207. 2005.PubMed/NCBI View Article : Google Scholar |
|
Aguilar Diaz De Leon J and Borges CR: Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J Vis Exp: May 12, 2020 (Epub ahead of print). doi: 10.3791/61122. |
|
Keles MS, Taysi S, Sen N, Aksoy H and Akçay F: Effect of corticosteroid therapy on serum and CSF malondialdehyde and antioxidant proteins in multiple sclerosis. Can J Neurol Sci. 28:141–143. 2001.PubMed/NCBI View Article : Google Scholar |
|
Singh NP, Danner DB, Tice RR, Brant L and Schneider EL: DNA damage and repair with age in individual human lymphocytes. Mutat Res. 237:123–130. 1990.PubMed/NCBI View Article : Google Scholar |
|
Kasote DM, Katyare SS, Hegde MV and Bae H: Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 11:982–991. 2015.PubMed/NCBI View Article : Google Scholar |
|
Krishnaiah D, Sarbatly R and Nithyanandam R: A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 89:217–233. 2011. |
|
Veskoukis AS, Kyparos A, Paschalis V and Nikolaidis MG: Spectrophotometric assays for measuring redox biomarkers in blood. Biomarkers. 21:208–217. 2016.PubMed/NCBI View Article : Google Scholar |
|
Veskoukis AS, Goutianos G, Paschalis V, Margaritelis NV, Tzioura A, Dipla K, Zafeiridis A, Vrabas IS, Kyparos A and Nikolaidis MG: The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration. Eur J Appl Physiol. 116:791–804. 2016.PubMed/NCBI View Article : Google Scholar |
|
Gerasopoulos K, Stagos D, Petrotos K, Kokkas S, Kantas D, Goulas P and Kouretas D: Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food Chem Toxicol. 86:319–327. 2015.PubMed/NCBI View Article : Google Scholar |
|
Makri S, Kafantaris I, Stagos D, Chamokeridou T, Petrotos K, Gerasopoulos K, Mpesios A, Goutzourelas N, Kokkas S, Goulas P, et al: Novel feed including bioactive compounds from winery wastes improved broilers' redox status in blood and tissues of vital organs. Food Chem Toxicol. 102:24–31. 2017.PubMed/NCBI View Article : Google Scholar |
|
Veskoukis AS, Tsatsakis A and Kouretas D: Approaching reactive species in the frame of their clinical significance: A toxicological appraisal. Food Chem Toxicol. 138(111206)2020.PubMed/NCBI View Article : Google Scholar |
|
Marrocco I, Altieri F and Peluso I: Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. 2017(6501046)2017.PubMed/NCBI View Article : Google Scholar |
|
Jones B and Kenward MG: Design and Analysis of Cross-Over Trials. In: Chapman & Hall/CRC Monographs on Statistics and Applied Probability, 2015. |
|
Matthaiou CM, Goutzourelas N, Stagos D, Sarafoglou E, Jamurtas A, Koulocheri SD, Haroutounian SA, Tsatsakis AM and Kouretas D: Pomegranate juice consumption increases GSH levels and reduces lipid and protein oxidation in human blood. Food Chem Toxicol. 73:1–6. 2014.PubMed/NCBI View Article : Google Scholar |
|
Yagi K: Assay for blood plasma or serum. Methods Enzymol. 105:328–331. 1984.PubMed/NCBI View Article : Google Scholar |
|
Fedorova M, Bollineni RC and Hoffmann R: Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies. Mass Spectrom Rev. 33:79–97. 2014.PubMed/NCBI View Article : Google Scholar |
|
Levine R: Oxygen radicals in biological systems. Part B: Oxygen radicals and antioxidants. Methods Enzymol. 186:1–766. 1990.PubMed/NCBI |
|
Janaszewska A and Bartosz G: Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand J Clin Lab Invest. 62:231–236. 2002.PubMed/NCBI View Article : Google Scholar |
|
Reddy YN, Murthy SV, Krishna DR and Prabhakar MC: Role of free radicals and antioxidants in tuberculosis patients. IJTB. 51:213–218. 2004. |
|
Aebi H: Catalase in vitro. Methods Enzymol. 105:121–126. 1984.PubMed/NCBI View Article : Google Scholar |
|
Sepasi Tehrani H and Moosavi-Movahedi AA: Catalase and its mysteries. Prog Biophys Mol Biol. 140:5–12. 2018.PubMed/NCBI View Article : Google Scholar |
|
Wilson DW, Nash P, Buttar HS, Griffiths K, Singh R, De Meester F, Horiuchi R and Takahashi T: The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants. 6(6)2017.PubMed/NCBI View Article : Google Scholar |
|
Abuajah CI, Ogbonna AC and Osuji CM: Functional components and medicinal properties of food: A review. J Food Sci Technol. 52:2522–2529. 2015.PubMed/NCBI View Article : Google Scholar |
|
Alkhatib A, Tsang C, Tiss A, Bahorun T, Arefanian H, Barake R, Khadir A and Tuomilehto J: Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients. 9(9)2017.PubMed/NCBI View Article : Google Scholar |
|
Konstantinidi M and Koutelidakis AE: Functional foods and bioactive compounds: A review of its possible role on weight management and obesity's metabolic consequences. Medicines (Basel). 6(6)2019.PubMed/NCBI View Article : Google Scholar |
|
Azman KF and Zakaria R: Honey as an antioxidant therapy to reduce cognitive ageing. Iran J Basic Med Sci. 22:1368–1377. 2019.PubMed/NCBI View Article : Google Scholar |
|
Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S, Jabeen S, Shamim N and Othman NH: Honey as a potential natural antioxidant medicine: an insight into its molecular mechanisms of action. Oxid Med Cell Longev. 2018(8367846)2018.PubMed/NCBI View Article : Google Scholar |
|
Almasaudi SB, El-Shitany NA, Abbas AT, Abdel-dayem UA, Ali SS, Al Jaouni SK and Harakeh S: Antioxidant, anti-inflammatory, and antiulcer potential of manuka honey against gastric ulcer in rats. Oxid Med Cell Longev. 2016(3643824)2016.PubMed/NCBI View Article : Google Scholar |
|
Chua LS, Rahaman NL, Adnan NA and Eddie Tan TT: Antioxidant activity of three honey samples in relation with their biochemical components. J Anal Methods Chem. 2013(313798)2013.PubMed/NCBI View Article : Google Scholar |
|
Gül A and Pehlivan T: Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J Biol Sci. 25:1056–1065. 2018.PubMed/NCBI View Article : Google Scholar |
|
Velásquez P, Montenegro G, Leyton F, Ascar L, Ramirez O and Giordano A: Bioactive compounds and antibacterial properties of monofloral Ulmo honey. CYTA J Food. 18:11–19. 2020. |